Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223644809> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4223644809 endingPage "107964" @default.
- W4223644809 startingPage "107964" @default.
- W4223644809 abstract "In this article, the performance of the LoRa network for an industrial scenario has been optimized using a machine learning approach. The network performance is analyzed in terms of received power, outage probability, spectral efficiency and bit error rate (BER). A link-level performance of the LoRa network for an indoor industrial area considering both the non-obstructive and obstructive scenarios has been experimentally evaluated in terms of received signal strength indicator (RSSI) and signal-to-noise ratio (SNR). Using the measured values of RSSI and SNR at the LoRa gateway, the received power is mathematically modelled which is further considered as an optimization problem. First, an artificial neural network (ANN) model was built and trained to predict the received power. Particle swarm optimization (PSO) algorithm was further used to find the optimal values of LoRa parameters corresponding to maximum received power. Simulation results reveal that the proposed optimization approach significantly improves the outage probability, spectral efficiency and BER of the LoRa network." @default.
- W4223644809 created "2022-04-15" @default.
- W4223644809 creator A5013207990 @default.
- W4223644809 creator A5014659261 @default.
- W4223644809 creator A5055876760 @default.
- W4223644809 date "2022-05-01" @default.
- W4223644809 modified "2023-09-27" @default.
- W4223644809 title "Optimizing the LoRa network performance for industrial scenario using a machine learning approach" @default.
- W4223644809 cites W2537187694 @default.
- W4223644809 cites W2795348068 @default.
- W4223644809 cites W2809803840 @default.
- W4223644809 cites W2892095187 @default.
- W4223644809 cites W2924595251 @default.
- W4223644809 cites W2955338161 @default.
- W4223644809 cites W2958504493 @default.
- W4223644809 cites W2963175268 @default.
- W4223644809 cites W2964362858 @default.
- W4223644809 cites W2969427012 @default.
- W4223644809 cites W2974458319 @default.
- W4223644809 cites W2981581559 @default.
- W4223644809 cites W2985445011 @default.
- W4223644809 cites W3005693687 @default.
- W4223644809 cites W3017037536 @default.
- W4223644809 cites W3017347311 @default.
- W4223644809 cites W3048210088 @default.
- W4223644809 cites W3085208921 @default.
- W4223644809 cites W3087818652 @default.
- W4223644809 cites W3095347656 @default.
- W4223644809 cites W3112255959 @default.
- W4223644809 doi "https://doi.org/10.1016/j.compeleceng.2022.107964" @default.
- W4223644809 hasPublicationYear "2022" @default.
- W4223644809 type Work @default.
- W4223644809 citedByCount "1" @default.
- W4223644809 countsByYear W42236448092022 @default.
- W4223644809 crossrefType "journal-article" @default.
- W4223644809 hasAuthorship W4223644809A5013207990 @default.
- W4223644809 hasAuthorship W4223644809A5014659261 @default.
- W4223644809 hasAuthorship W4223644809A5055876760 @default.
- W4223644809 hasConcept C11413529 @default.
- W4223644809 hasConcept C121332964 @default.
- W4223644809 hasConcept C154945302 @default.
- W4223644809 hasConcept C163258240 @default.
- W4223644809 hasConcept C176808163 @default.
- W4223644809 hasConcept C203274722 @default.
- W4223644809 hasConcept C24590314 @default.
- W4223644809 hasConcept C31258907 @default.
- W4223644809 hasConcept C41008148 @default.
- W4223644809 hasConcept C50644808 @default.
- W4223644809 hasConcept C56296756 @default.
- W4223644809 hasConcept C57273362 @default.
- W4223644809 hasConcept C62520636 @default.
- W4223644809 hasConcept C76155785 @default.
- W4223644809 hasConcept C85617194 @default.
- W4223644809 hasConceptScore W4223644809C11413529 @default.
- W4223644809 hasConceptScore W4223644809C121332964 @default.
- W4223644809 hasConceptScore W4223644809C154945302 @default.
- W4223644809 hasConceptScore W4223644809C163258240 @default.
- W4223644809 hasConceptScore W4223644809C176808163 @default.
- W4223644809 hasConceptScore W4223644809C203274722 @default.
- W4223644809 hasConceptScore W4223644809C24590314 @default.
- W4223644809 hasConceptScore W4223644809C31258907 @default.
- W4223644809 hasConceptScore W4223644809C41008148 @default.
- W4223644809 hasConceptScore W4223644809C50644808 @default.
- W4223644809 hasConceptScore W4223644809C56296756 @default.
- W4223644809 hasConceptScore W4223644809C57273362 @default.
- W4223644809 hasConceptScore W4223644809C62520636 @default.
- W4223644809 hasConceptScore W4223644809C76155785 @default.
- W4223644809 hasConceptScore W4223644809C85617194 @default.
- W4223644809 hasFunder F4320325255 @default.
- W4223644809 hasLocation W42236448091 @default.
- W4223644809 hasOpenAccess W4223644809 @default.
- W4223644809 hasPrimaryLocation W42236448091 @default.
- W4223644809 hasRelatedWork W1970060802 @default.
- W4223644809 hasRelatedWork W2034357437 @default.
- W4223644809 hasRelatedWork W2067874406 @default.
- W4223644809 hasRelatedWork W2142614004 @default.
- W4223644809 hasRelatedWork W2147714418 @default.
- W4223644809 hasRelatedWork W2164441282 @default.
- W4223644809 hasRelatedWork W2361617591 @default.
- W4223644809 hasRelatedWork W2378158679 @default.
- W4223644809 hasRelatedWork W2510217115 @default.
- W4223644809 hasRelatedWork W3210983388 @default.
- W4223644809 hasVolume "100" @default.
- W4223644809 isParatext "false" @default.
- W4223644809 isRetracted "false" @default.
- W4223644809 workType "article" @default.