Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223646541> ?p ?o ?g. }
- W4223646541 endingPage "e32578" @default.
- W4223646541 startingPage "e32578" @default.
- W4223646541 abstract "Overweight and obesity have now reached a state of a pandemic despite the clinical and commercial programs available. Artificial intelligence (AI) chatbots have a strong potential in optimizing such programs for weight loss.This study aimed to review AI chatbot use cases for weight loss and to identify the essential components for prolonging user engagement.A scoping review was conducted using the 5-stage framework by Arksey and O'Malley. Articles were searched across nine electronic databases (ACM Digital Library, CINAHL, Cochrane Central, Embase, IEEE Xplore, PsycINFO, PubMed, Scopus, and Web of Science) until July 9, 2021. Gray literature, reference lists, and Google Scholar were also searched.A total of 23 studies with 2231 participants were included and evaluated in this review. Most studies (8/23, 35%) focused on using AI chatbots to promote both a healthy diet and exercise, 13% (3/23) of the studies used AI chatbots solely for lifestyle data collection and obesity risk assessment whereas only 4% (1/23) of the studies focused on promoting a combination of a healthy diet, exercise, and stress management. In total, 48% (11/23) of the studies used only text-based AI chatbots, 52% (12/23) operationalized AI chatbots through smartphones, and 39% (9/23) integrated data collected through fitness wearables or Internet of Things appliances. The core functions of AI chatbots were to provide personalized recommendations (20/23, 87%), motivational messages (18/23, 78%), gamification (6/23, 26%), and emotional support (6/23, 26%). Study participants who experienced speech- and augmented reality-based chatbot interactions in addition to text-based chatbot interactions reported higher user engagement because of the convenience of hands-free interactions. Enabling conversations through multiple platforms (eg, SMS text messaging, Slack, Telegram, Signal, WhatsApp, or Facebook Messenger) and devices (eg, laptops, Google Home, and Amazon Alexa) was reported to increase user engagement. The human semblance of chatbots through verbal and nonverbal cues improved user engagement through interactivity and empathy. Other techniques used in text-based chatbots included personally and culturally appropriate colloquial tones and content; emojis that emulate human emotional expressions; positively framed words; citations of credible information sources; personification; validation; and the provision of real-time, fast, and reliable recommendations. Prevailing issues included privacy; accountability; user burden; and interoperability with other databases, third-party applications, social media platforms, devices, and appliances.AI chatbots should be designed to be human-like, personalized, contextualized, immersive, and enjoyable to enhance user experience, engagement, behavior change, and weight loss. These require the integration of health metrics (eg, based on self-reports and wearable trackers), personality and preferences (eg, based on goal achievements), circumstantial behaviors (eg, trigger-based overconsumption), and emotional states (eg, chatbot conversations and wearable stress detectors) to deliver personalized and effective recommendations for weight loss." @default.
- W4223646541 created "2022-04-15" @default.
- W4223646541 creator A5015919186 @default.
- W4223646541 date "2022-04-13" @default.
- W4223646541 modified "2023-10-18" @default.
- W4223646541 title "The Use of Artificial Intelligence–Based Conversational Agents (Chatbots) for Weight Loss: Scoping Review and Practical Recommendations" @default.
- W4223646541 cites W1539807742 @default.
- W4223646541 cites W2075950485 @default.
- W4223646541 cites W2077109464 @default.
- W4223646541 cites W2104113005 @default.
- W4223646541 cites W2144596428 @default.
- W4223646541 cites W2150432411 @default.
- W4223646541 cites W2204739978 @default.
- W4223646541 cites W2214691690 @default.
- W4223646541 cites W2581048896 @default.
- W4223646541 cites W2587659484 @default.
- W4223646541 cites W2606173674 @default.
- W4223646541 cites W2608852370 @default.
- W4223646541 cites W2649089283 @default.
- W4223646541 cites W2765363580 @default.
- W4223646541 cites W2765401045 @default.
- W4223646541 cites W2768643236 @default.
- W4223646541 cites W2783429352 @default.
- W4223646541 cites W2788650759 @default.
- W4223646541 cites W2795876669 @default.
- W4223646541 cites W2798109075 @default.
- W4223646541 cites W2803207128 @default.
- W4223646541 cites W2818757316 @default.
- W4223646541 cites W2884180038 @default.
- W4223646541 cites W2891378911 @default.
- W4223646541 cites W2895995041 @default.
- W4223646541 cites W2896005440 @default.
- W4223646541 cites W2908201961 @default.
- W4223646541 cites W2911123024 @default.
- W4223646541 cites W2917520831 @default.
- W4223646541 cites W2945732805 @default.
- W4223646541 cites W2945914557 @default.
- W4223646541 cites W2946574919 @default.
- W4223646541 cites W2946896670 @default.
- W4223646541 cites W2974262946 @default.
- W4223646541 cites W2991585848 @default.
- W4223646541 cites W3004522688 @default.
- W4223646541 cites W3004630976 @default.
- W4223646541 cites W3004837703 @default.
- W4223646541 cites W3009727869 @default.
- W4223646541 cites W3013390201 @default.
- W4223646541 cites W3036470691 @default.
- W4223646541 cites W3048100966 @default.
- W4223646541 cites W3095319910 @default.
- W4223646541 cites W3096059254 @default.
- W4223646541 cites W3113088377 @default.
- W4223646541 cites W3114402708 @default.
- W4223646541 cites W3123670991 @default.
- W4223646541 cites W3126039345 @default.
- W4223646541 cites W3131018792 @default.
- W4223646541 cites W3131696262 @default.
- W4223646541 cites W3153608027 @default.
- W4223646541 cites W3164579095 @default.
- W4223646541 cites W3164956340 @default.
- W4223646541 cites W3165564782 @default.
- W4223646541 cites W3166455838 @default.
- W4223646541 cites W3183262330 @default.
- W4223646541 doi "https://doi.org/10.2196/32578" @default.
- W4223646541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35416791" @default.
- W4223646541 hasPublicationYear "2022" @default.
- W4223646541 type Work @default.
- W4223646541 citedByCount "26" @default.
- W4223646541 countsByYear W42236465412022 @default.
- W4223646541 countsByYear W42236465412023 @default.
- W4223646541 crossrefType "journal-article" @default.
- W4223646541 hasAuthorship W4223646541A5015919186 @default.
- W4223646541 hasBestOaLocation W42236465411 @default.
- W4223646541 hasConcept C126322002 @default.
- W4223646541 hasConcept C136764020 @default.
- W4223646541 hasConcept C154945302 @default.
- W4223646541 hasConcept C15744967 @default.
- W4223646541 hasConcept C159110408 @default.
- W4223646541 hasConcept C17744445 @default.
- W4223646541 hasConcept C183003079 @default.
- W4223646541 hasConcept C199539241 @default.
- W4223646541 hasConcept C27415008 @default.
- W4223646541 hasConcept C2779041454 @default.
- W4223646541 hasConcept C2779473830 @default.
- W4223646541 hasConcept C2779549880 @default.
- W4223646541 hasConcept C2780586474 @default.
- W4223646541 hasConcept C2781145037 @default.
- W4223646541 hasConcept C41008148 @default.
- W4223646541 hasConcept C511355011 @default.
- W4223646541 hasConcept C544821477 @default.
- W4223646541 hasConcept C71924100 @default.
- W4223646541 hasConcept C83867959 @default.
- W4223646541 hasConceptScore W4223646541C126322002 @default.
- W4223646541 hasConceptScore W4223646541C136764020 @default.
- W4223646541 hasConceptScore W4223646541C154945302 @default.
- W4223646541 hasConceptScore W4223646541C15744967 @default.
- W4223646541 hasConceptScore W4223646541C159110408 @default.
- W4223646541 hasConceptScore W4223646541C17744445 @default.
- W4223646541 hasConceptScore W4223646541C183003079 @default.