Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223649623> ?p ?o ?g. }
- W4223649623 endingPage "103392" @default.
- W4223649623 startingPage "103392" @default.
- W4223649623 abstract "Analyzing network traffic data to detect suspicious network activities (i.e., intrusions) requires tremendous effort due to the variability of the data and constant changes in network traffic patterns. This study introduces an approach to predict future network event (normal and attack) frequencies by generating forecast models and estimating their attack risks. Wavelet transform is used to extract features, and the multivariate time series method, Vector Auto Regression with eXogenous variables (VARX), is utilized to predict future network traffic events. Attack risks for network events are estimated with an adaptive threshold method and assessed by performing classification with two machine learning techniques. We also performed a comparative evaluation to examine the relationship among different time scales (one second, five seconds, and fifteen seconds) and three wavelets in determining attack risks. Our analysis results indicate that wavelet features with VARX show the capability to analyze multivariate network traffic time series data to forecast future network events and estimate their attack risks." @default.
- W4223649623 created "2022-04-15" @default.
- W4223649623 creator A5064772845 @default.
- W4223649623 creator A5072741922 @default.
- W4223649623 creator A5075553610 @default.
- W4223649623 creator A5075876111 @default.
- W4223649623 creator A5090126029 @default.
- W4223649623 date "2022-07-01" @default.
- W4223649623 modified "2023-10-16" @default.
- W4223649623 title "Forecasting network events to estimate attack risk: Integration of wavelet transform and vector auto regression with exogenous variables" @default.
- W4223649623 cites W1544613517 @default.
- W4223649623 cites W1574207021 @default.
- W4223649623 cites W1994373811 @default.
- W4223649623 cites W2008224380 @default.
- W4223649623 cites W2016210396 @default.
- W4223649623 cites W2018378938 @default.
- W4223649623 cites W2049243455 @default.
- W4223649623 cites W2055130908 @default.
- W4223649623 cites W2061062671 @default.
- W4223649623 cites W2062840500 @default.
- W4223649623 cites W2063016658 @default.
- W4223649623 cites W2075887421 @default.
- W4223649623 cites W2076758681 @default.
- W4223649623 cites W2077028504 @default.
- W4223649623 cites W2077442291 @default.
- W4223649623 cites W2081290035 @default.
- W4223649623 cites W2081842460 @default.
- W4223649623 cites W2097580026 @default.
- W4223649623 cites W2104722531 @default.
- W4223649623 cites W2116618651 @default.
- W4223649623 cites W2121511513 @default.
- W4223649623 cites W2130322178 @default.
- W4223649623 cites W2133720763 @default.
- W4223649623 cites W2141078707 @default.
- W4223649623 cites W2147865031 @default.
- W4223649623 cites W2212753854 @default.
- W4223649623 cites W2278186031 @default.
- W4223649623 cites W2338694366 @default.
- W4223649623 cites W2403749440 @default.
- W4223649623 cites W2605817989 @default.
- W4223649623 cites W2752728302 @default.
- W4223649623 cites W2767153057 @default.
- W4223649623 cites W2897600072 @default.
- W4223649623 cites W2972302902 @default.
- W4223649623 cites W2982254277 @default.
- W4223649623 cites W2990352665 @default.
- W4223649623 cites W3001052135 @default.
- W4223649623 cites W3003298995 @default.
- W4223649623 cites W3005180383 @default.
- W4223649623 cites W3007028474 @default.
- W4223649623 cites W3123637775 @default.
- W4223649623 cites W3143021555 @default.
- W4223649623 cites W3153985138 @default.
- W4223649623 cites W3157871125 @default.
- W4223649623 cites W4254166260 @default.
- W4223649623 cites W4292671038 @default.
- W4223649623 doi "https://doi.org/10.1016/j.jnca.2022.103392" @default.
- W4223649623 hasPublicationYear "2022" @default.
- W4223649623 type Work @default.
- W4223649623 citedByCount "6" @default.
- W4223649623 countsByYear W42236496232022 @default.
- W4223649623 countsByYear W42236496232023 @default.
- W4223649623 crossrefType "journal-article" @default.
- W4223649623 hasAuthorship W4223649623A5064772845 @default.
- W4223649623 hasAuthorship W4223649623A5072741922 @default.
- W4223649623 hasAuthorship W4223649623A5075553610 @default.
- W4223649623 hasAuthorship W4223649623A5075876111 @default.
- W4223649623 hasAuthorship W4223649623A5090126029 @default.
- W4223649623 hasBestOaLocation W42236496231 @default.
- W4223649623 hasConcept C105795698 @default.
- W4223649623 hasConcept C119857082 @default.
- W4223649623 hasConcept C124101348 @default.
- W4223649623 hasConcept C151406439 @default.
- W4223649623 hasConcept C154945302 @default.
- W4223649623 hasConcept C161584116 @default.
- W4223649623 hasConcept C196216189 @default.
- W4223649623 hasConcept C33923547 @default.
- W4223649623 hasConcept C41008148 @default.
- W4223649623 hasConcept C47432892 @default.
- W4223649623 hasConcept C83546350 @default.
- W4223649623 hasConceptScore W4223649623C105795698 @default.
- W4223649623 hasConceptScore W4223649623C119857082 @default.
- W4223649623 hasConceptScore W4223649623C124101348 @default.
- W4223649623 hasConceptScore W4223649623C151406439 @default.
- W4223649623 hasConceptScore W4223649623C154945302 @default.
- W4223649623 hasConceptScore W4223649623C161584116 @default.
- W4223649623 hasConceptScore W4223649623C196216189 @default.
- W4223649623 hasConceptScore W4223649623C33923547 @default.
- W4223649623 hasConceptScore W4223649623C41008148 @default.
- W4223649623 hasConceptScore W4223649623C47432892 @default.
- W4223649623 hasConceptScore W4223649623C83546350 @default.
- W4223649623 hasFunder F4320338281 @default.
- W4223649623 hasLocation W42236496231 @default.
- W4223649623 hasOpenAccess W4223649623 @default.
- W4223649623 hasPrimaryLocation W42236496231 @default.
- W4223649623 hasRelatedWork W2046633342 @default.
- W4223649623 hasRelatedWork W2358293514 @default.
- W4223649623 hasRelatedWork W2361261277 @default.