Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223654260> ?p ?o ?g. }
- W4223654260 endingPage "117" @default.
- W4223654260 startingPage "105" @default.
- W4223654260 abstract "In recent years surface electromyography signals-based machine learning models are rapidly establishing. The efficacy of prosthetic arm growth for transhumeral amputees is aided by efficient classifiers. The paper aims to propose a stacking classifier-based classification system for sEMG shoulder movements. It presents the possibility of various shoulder motions classification of transhumeral amputees. To improve the system performance, adaptive threshold method and wavelet transformation have been applied for features extraction. Six different classifiers Support Vector Machines (SVM), Tree, Random Forest (RF), K-Nearest Neighbour (KNN), AdaBoost and Naïve Bayes (NB) are designed to extract the sEMG data classification accuracy. With cross-validation, the accuracy of RF, Tree and Ada Boost is 97%, 92% and 92% respectively. Stacking classifiers provides an accuracy as 99.4% after combining the best predicted multiple classifiers." @default.
- W4223654260 created "2022-04-15" @default.
- W4223654260 creator A5008527378 @default.
- W4223654260 date "2022-04-01" @default.
- W4223654260 modified "2023-09-30" @default.
- W4223654260 title "Stacking classifier to improve the classification of shoulder motion in transhumeral amputees" @default.
- W4223654260 cites W1539834066 @default.
- W4223654260 cites W1584760375 @default.
- W4223654260 cites W1986483248 @default.
- W4223654260 cites W1994569454 @default.
- W4223654260 cites W1999841745 @default.
- W4223654260 cites W2002816941 @default.
- W4223654260 cites W2043699023 @default.
- W4223654260 cites W2055731784 @default.
- W4223654260 cites W2055793546 @default.
- W4223654260 cites W2056933353 @default.
- W4223654260 cites W2067486892 @default.
- W4223654260 cites W2088178017 @default.
- W4223654260 cites W2098084380 @default.
- W4223654260 cites W2112834193 @default.
- W4223654260 cites W2113998107 @default.
- W4223654260 cites W2114997848 @default.
- W4223654260 cites W2115790233 @default.
- W4223654260 cites W2120395111 @default.
- W4223654260 cites W2121099536 @default.
- W4223654260 cites W2121835671 @default.
- W4223654260 cites W2125271423 @default.
- W4223654260 cites W2129316790 @default.
- W4223654260 cites W2133935519 @default.
- W4223654260 cites W2136104104 @default.
- W4223654260 cites W2141087070 @default.
- W4223654260 cites W2142674421 @default.
- W4223654260 cites W2148672603 @default.
- W4223654260 cites W2171860505 @default.
- W4223654260 cites W2174365276 @default.
- W4223654260 cites W2345653654 @default.
- W4223654260 cites W2363309403 @default.
- W4223654260 cites W2413089822 @default.
- W4223654260 cites W2556533447 @default.
- W4223654260 cites W2569969175 @default.
- W4223654260 cites W2598649123 @default.
- W4223654260 cites W2613276971 @default.
- W4223654260 cites W2623533660 @default.
- W4223654260 cites W2745743236 @default.
- W4223654260 cites W2769907008 @default.
- W4223654260 cites W2797201270 @default.
- W4223654260 cites W2808020508 @default.
- W4223654260 cites W2895859720 @default.
- W4223654260 cites W2921263890 @default.
- W4223654260 cites W2942766443 @default.
- W4223654260 cites W2948836927 @default.
- W4223654260 cites W2950343715 @default.
- W4223654260 cites W2955360429 @default.
- W4223654260 cites W2968607548 @default.
- W4223654260 cites W2972073716 @default.
- W4223654260 cites W2973700007 @default.
- W4223654260 cites W3008966996 @default.
- W4223654260 cites W3091879966 @default.
- W4223654260 cites W3108856201 @default.
- W4223654260 cites W3134418464 @default.
- W4223654260 cites W3136821121 @default.
- W4223654260 cites W4210997624 @default.
- W4223654260 cites W4236362309 @default.
- W4223654260 cites W885551291 @default.
- W4223654260 doi "https://doi.org/10.1515/bmt-2020-0343" @default.
- W4223654260 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35363448" @default.
- W4223654260 hasPublicationYear "2022" @default.
- W4223654260 type Work @default.
- W4223654260 citedByCount "0" @default.
- W4223654260 crossrefType "journal-article" @default.
- W4223654260 hasAuthorship W4223654260A5008527378 @default.
- W4223654260 hasConcept C119857082 @default.
- W4223654260 hasConcept C121332964 @default.
- W4223654260 hasConcept C12267149 @default.
- W4223654260 hasConcept C141404830 @default.
- W4223654260 hasConcept C153180895 @default.
- W4223654260 hasConcept C154945302 @default.
- W4223654260 hasConcept C169258074 @default.
- W4223654260 hasConcept C27181475 @default.
- W4223654260 hasConcept C2777515770 @default.
- W4223654260 hasConcept C33347731 @default.
- W4223654260 hasConcept C41008148 @default.
- W4223654260 hasConcept C46141821 @default.
- W4223654260 hasConcept C52001869 @default.
- W4223654260 hasConcept C71924100 @default.
- W4223654260 hasConcept C84525736 @default.
- W4223654260 hasConcept C95623464 @default.
- W4223654260 hasConcept C99508421 @default.
- W4223654260 hasConceptScore W4223654260C119857082 @default.
- W4223654260 hasConceptScore W4223654260C121332964 @default.
- W4223654260 hasConceptScore W4223654260C12267149 @default.
- W4223654260 hasConceptScore W4223654260C141404830 @default.
- W4223654260 hasConceptScore W4223654260C153180895 @default.
- W4223654260 hasConceptScore W4223654260C154945302 @default.
- W4223654260 hasConceptScore W4223654260C169258074 @default.
- W4223654260 hasConceptScore W4223654260C27181475 @default.
- W4223654260 hasConceptScore W4223654260C2777515770 @default.
- W4223654260 hasConceptScore W4223654260C33347731 @default.