Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223892020> ?p ?o ?g. }
- W4223892020 abstract "Regime shifts have large consequences for ecosystems and the services they provide. However, understanding the potential for, causes of, proximity to, and thresholds for regime shifts in nearly all settings is difficult. Generic statistical indicators of resilience have been proposed and studied in a wide range of ecosystems as a method to detect when regime shifts are becoming more likely without direct knowledge of underlying system dynamics or thresholds. These early warning statistics (EWS) have been studied separately but there have been few examples that directly compare temporal and spatial EWS in ecosystem-scale empirical data. To test these methods, we collected high-frequency time series and high-resolution spatial data during a whole-lake fertilization experiment while also monitoring an adjacent reference lake. We calculated two common EWS, standard deviation and autocorrelation, in both time series and spatial data to evaluate their performance prior to the resulting algal bloom. We also applied the quickest detection method to generate binary alarms of resilience change from temporal EWS. One temporal EWS, rolling window standard deviation, provided advanced warning in most variables prior to the bloom, showing trends and between-lake patterns consistent with theory. In contrast, temporal autocorrelation and both measures of spatial EWS (spatial SD, Moran's I) provided little or no warning. By compiling time series data from this and past experiments with and without nutrient additions, we were able to evaluate temporal EWS performance for both constant and changing resilience conditions. True positive alarm rates were 2.5-8.3 times higher for rolling window standard deviation when a lake was being pushed towards a bloom than the rate of false positives when it was not. For rolling window autocorrelation, alarm rates were much lower and no variable had a higher true positive than false positive alarm rate. Our findings suggest temporal EWS provide advanced warning of algal blooms and that this approach could help managers prepare for and/or minimize negative bloom impacts." @default.
- W4223892020 created "2022-04-19" @default.
- W4223892020 creator A5020357163 @default.
- W4223892020 creator A5034039087 @default.
- W4223892020 creator A5044651603 @default.
- W4223892020 creator A5050493717 @default.
- W4223892020 creator A5053700390 @default.
- W4223892020 creator A5080951776 @default.
- W4223892020 date "2022-05-19" @default.
- W4223892020 modified "2023-10-16" @default.
- W4223892020 title "Evaluating the performance of temporal and spatial early warning statistics of algal blooms" @default.
- W4223892020 cites W1883925947 @default.
- W4223892020 cites W1942321685 @default.
- W4223892020 cites W1974263742 @default.
- W4223892020 cites W1987543629 @default.
- W4223892020 cites W1991359665 @default.
- W4223892020 cites W1994717582 @default.
- W4223892020 cites W1995043208 @default.
- W4223892020 cites W1996239808 @default.
- W4223892020 cites W2010541785 @default.
- W4223892020 cites W2017731476 @default.
- W4223892020 cites W2022071825 @default.
- W4223892020 cites W2022914090 @default.
- W4223892020 cites W2039361917 @default.
- W4223892020 cites W2042983691 @default.
- W4223892020 cites W2047006371 @default.
- W4223892020 cites W2050335144 @default.
- W4223892020 cites W2061068149 @default.
- W4223892020 cites W2078582567 @default.
- W4223892020 cites W2079237780 @default.
- W4223892020 cites W2081787791 @default.
- W4223892020 cites W2084767833 @default.
- W4223892020 cites W2100106837 @default.
- W4223892020 cites W2101173516 @default.
- W4223892020 cites W2103948957 @default.
- W4223892020 cites W2116199452 @default.
- W4223892020 cites W2122089686 @default.
- W4223892020 cites W2122219241 @default.
- W4223892020 cites W2123730929 @default.
- W4223892020 cites W2128573963 @default.
- W4223892020 cites W2130412570 @default.
- W4223892020 cites W2140456136 @default.
- W4223892020 cites W2143222716 @default.
- W4223892020 cites W2150252482 @default.
- W4223892020 cites W2157658472 @default.
- W4223892020 cites W2158678754 @default.
- W4223892020 cites W2168487879 @default.
- W4223892020 cites W2169969573 @default.
- W4223892020 cites W2170330538 @default.
- W4223892020 cites W2171351474 @default.
- W4223892020 cites W2319291298 @default.
- W4223892020 cites W2320800229 @default.
- W4223892020 cites W2335382248 @default.
- W4223892020 cites W2511567222 @default.
- W4223892020 cites W2547361983 @default.
- W4223892020 cites W2552393912 @default.
- W4223892020 cites W2562265195 @default.
- W4223892020 cites W2586651443 @default.
- W4223892020 cites W2600994031 @default.
- W4223892020 cites W2612315816 @default.
- W4223892020 cites W2763000680 @default.
- W4223892020 cites W2765573203 @default.
- W4223892020 cites W2769231541 @default.
- W4223892020 cites W2804016196 @default.
- W4223892020 cites W2883251903 @default.
- W4223892020 cites W2887322084 @default.
- W4223892020 cites W2889656327 @default.
- W4223892020 cites W2896782565 @default.
- W4223892020 cites W2899288701 @default.
- W4223892020 cites W2910500871 @default.
- W4223892020 cites W2978280432 @default.
- W4223892020 cites W3092239452 @default.
- W4223892020 cites W3098352321 @default.
- W4223892020 cites W3100575704 @default.
- W4223892020 cites W3121844390 @default.
- W4223892020 cites W3135442709 @default.
- W4223892020 cites W4237620409 @default.
- W4223892020 doi "https://doi.org/10.1002/eap.2616" @default.
- W4223892020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35368134" @default.
- W4223892020 hasPublicationYear "2022" @default.
- W4223892020 type Work @default.
- W4223892020 citedByCount "1" @default.
- W4223892020 countsByYear W42238920202022 @default.
- W4223892020 crossrefType "journal-article" @default.
- W4223892020 hasAuthorship W4223892020A5020357163 @default.
- W4223892020 hasAuthorship W4223892020A5034039087 @default.
- W4223892020 hasAuthorship W4223892020A5044651603 @default.
- W4223892020 hasAuthorship W4223892020A5050493717 @default.
- W4223892020 hasAuthorship W4223892020A5053700390 @default.
- W4223892020 hasAuthorship W4223892020A5080951776 @default.
- W4223892020 hasConcept C105795698 @default.
- W4223892020 hasConcept C121332964 @default.
- W4223892020 hasConcept C151406439 @default.
- W4223892020 hasConcept C155567681 @default.
- W4223892020 hasConcept C158709400 @default.
- W4223892020 hasConcept C159620131 @default.
- W4223892020 hasConcept C159985019 @default.
- W4223892020 hasConcept C18903297 @default.
- W4223892020 hasConcept C192562407 @default.
- W4223892020 hasConcept C204323151 @default.