Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223897975> ?p ?o ?g. }
- W4223897975 endingPage "106798" @default.
- W4223897975 startingPage "106798" @default.
- W4223897975 abstract "Numerical simulation that combines finite element methods and experimental data has been recognized as effective in modeling hysteretic behaviors and capturing the principle mechanical trend of passive energy dissipation devices. However, the seismic design and mechanical characteristics assessment for passive energy dissipation devices require a laborious effort and massive computational resources to tune mechanical-oriented parameters. Particularly, the potential risk of departure from the actual system is rising for the desirable seismic design of dampers due to the numerical model simplification and assumption. To eliminate the potential weakness of numerical models, this paper explores a surrogate model by implementing physics-informed deep neural networks (DNNs) to approximate hysteretic behaviors of S-shaped steel dampers. The proposed physics-informed DNNs mainly consists of recurrent neural networks (RNNs) and long short-term networks (LSTMs), which can encode the Bouc-Wen model into the direct graph and incorporate the effect of design-oriented geometry parameters. To validate the generality of the network, the optimization model was calibrated numerically and experimentally, respectively, which exhibits good performance in predicting nonlinear behaviors of different dampers with reasonable accuracy. The proposed physics-informed DNNs can be an alternative to relieve the laboriousness of the seismic design and mechanical characteristics assessment of passive energy dissipation devices." @default.
- W4223897975 created "2022-04-19" @default.
- W4223897975 creator A5007519822 @default.
- W4223897975 creator A5042015157 @default.
- W4223897975 creator A5048176699 @default.
- W4223897975 creator A5049792775 @default.
- W4223897975 creator A5078561392 @default.
- W4223897975 date "2022-07-01" @default.
- W4223897975 modified "2023-09-27" @default.
- W4223897975 title "Physics-informed deep neural networks for simulating S-shaped steel dampers" @default.
- W4223897975 cites W1508147193 @default.
- W4223897975 cites W1948048263 @default.
- W4223897975 cites W1996837265 @default.
- W4223897975 cites W2001905757 @default.
- W4223897975 cites W2004023648 @default.
- W4223897975 cites W2035016679 @default.
- W4223897975 cites W2037601845 @default.
- W4223897975 cites W2058077985 @default.
- W4223897975 cites W2061394285 @default.
- W4223897975 cites W2064675550 @default.
- W4223897975 cites W2065750417 @default.
- W4223897975 cites W2513106098 @default.
- W4223897975 cites W2802256857 @default.
- W4223897975 cites W2897436058 @default.
- W4223897975 cites W2899283552 @default.
- W4223897975 cites W2922306817 @default.
- W4223897975 cites W2935339072 @default.
- W4223897975 cites W2942468134 @default.
- W4223897975 cites W2942896733 @default.
- W4223897975 cites W2946752227 @default.
- W4223897975 cites W2952644952 @default.
- W4223897975 cites W2970286506 @default.
- W4223897975 cites W2990244813 @default.
- W4223897975 cites W3013665076 @default.
- W4223897975 cites W3021027692 @default.
- W4223897975 cites W3022953487 @default.
- W4223897975 cites W3027413276 @default.
- W4223897975 cites W3037134996 @default.
- W4223897975 cites W3041761848 @default.
- W4223897975 cites W3085046840 @default.
- W4223897975 cites W3092172785 @default.
- W4223897975 cites W3093739175 @default.
- W4223897975 cites W3114000978 @default.
- W4223897975 cites W3120617647 @default.
- W4223897975 cites W3183124975 @default.
- W4223897975 cites W3195330636 @default.
- W4223897975 cites W3211228052 @default.
- W4223897975 doi "https://doi.org/10.1016/j.compstruc.2022.106798" @default.
- W4223897975 hasPublicationYear "2022" @default.
- W4223897975 type Work @default.
- W4223897975 citedByCount "4" @default.
- W4223897975 countsByYear W42238979752023 @default.
- W4223897975 crossrefType "journal-article" @default.
- W4223897975 hasAuthorship W4223897975A5007519822 @default.
- W4223897975 hasAuthorship W4223897975A5042015157 @default.
- W4223897975 hasAuthorship W4223897975A5048176699 @default.
- W4223897975 hasAuthorship W4223897975A5049792775 @default.
- W4223897975 hasAuthorship W4223897975A5078561392 @default.
- W4223897975 hasConcept C121332964 @default.
- W4223897975 hasConcept C127413603 @default.
- W4223897975 hasConcept C135402231 @default.
- W4223897975 hasConcept C135628077 @default.
- W4223897975 hasConcept C140096630 @default.
- W4223897975 hasConcept C154945302 @default.
- W4223897975 hasConcept C15744967 @default.
- W4223897975 hasConcept C158622935 @default.
- W4223897975 hasConcept C186370098 @default.
- W4223897975 hasConcept C2780767217 @default.
- W4223897975 hasConcept C41008148 @default.
- W4223897975 hasConcept C50644808 @default.
- W4223897975 hasConcept C542102704 @default.
- W4223897975 hasConcept C62520636 @default.
- W4223897975 hasConcept C66938386 @default.
- W4223897975 hasConcept C97355855 @default.
- W4223897975 hasConceptScore W4223897975C121332964 @default.
- W4223897975 hasConceptScore W4223897975C127413603 @default.
- W4223897975 hasConceptScore W4223897975C135402231 @default.
- W4223897975 hasConceptScore W4223897975C135628077 @default.
- W4223897975 hasConceptScore W4223897975C140096630 @default.
- W4223897975 hasConceptScore W4223897975C154945302 @default.
- W4223897975 hasConceptScore W4223897975C15744967 @default.
- W4223897975 hasConceptScore W4223897975C158622935 @default.
- W4223897975 hasConceptScore W4223897975C186370098 @default.
- W4223897975 hasConceptScore W4223897975C2780767217 @default.
- W4223897975 hasConceptScore W4223897975C41008148 @default.
- W4223897975 hasConceptScore W4223897975C50644808 @default.
- W4223897975 hasConceptScore W4223897975C542102704 @default.
- W4223897975 hasConceptScore W4223897975C62520636 @default.
- W4223897975 hasConceptScore W4223897975C66938386 @default.
- W4223897975 hasConceptScore W4223897975C97355855 @default.
- W4223897975 hasLocation W42238979751 @default.
- W4223897975 hasOpenAccess W4223897975 @default.
- W4223897975 hasPrimaryLocation W42238979751 @default.
- W4223897975 hasRelatedWork W1964166631 @default.
- W4223897975 hasRelatedWork W1983322217 @default.
- W4223897975 hasRelatedWork W2088914834 @default.
- W4223897975 hasRelatedWork W2619930311 @default.
- W4223897975 hasRelatedWork W2742931751 @default.