Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223907654> ?p ?o ?g. }
- W4223907654 endingPage "107227" @default.
- W4223907654 startingPage "107227" @default.
- W4223907654 abstract "In the current study, the 3D shape optimization of a hyperloop pod’s head and tail is carried out to improve the pod’s aerodynamic performance . For shape exploration, a new shape design method called multi-resolution morphing is applied with three baseline hyperloop models, where each has its own aerodynamic characteristics . As a result, an optimal hyperloop pod with a drag value that is 7.5% smaller with respect to the baseline model and optimal pods with well-balanced drag and lift values are obtained. From further investigations, several meaningful results are also discovered. First, the shape of the tail has a greater impact on the drag and lift of the hyperloop pod than the shape of the head, and this difference is more remarkable in the drag than the lift. Second, changing the shape of the head does not elicit a large effect on the aerodynamic performance of the tail and vice versa. Accordingly, the optimization of a hyperloop pod’s head and tail can be implemented independently. A high correlation between the strength of the turbulent kinetic energy around the tail and drag is also found from a flow comparison between the optimal models. Finally, the local flow characteristics are similar for the models that are constructed with the same coefficients of the high-degree spherical harmonics. This indicates that it is possible to transfer the local flow characteristics of one model to the other via the multi-resolution morphing method. • The shape optimization of a hyperloop pod is carried out to improve its aerodynamic performance. • A new design method called multi-resolution is applied for the various hyperloop pod’s shape exploration. • Influences of the shapes of the hyperloop pod’s head and tail are investigated. • The flow characteristics around baseline and optimal hyperloop models are analyzed." @default.
- W4223907654 created "2022-04-19" @default.
- W4223907654 creator A5008379942 @default.
- W4223907654 creator A5010510594 @default.
- W4223907654 date "2022-06-01" @default.
- W4223907654 modified "2023-09-29" @default.
- W4223907654 title "Shape optimization of a hyperloop pod’s head and tail using a multi-resolution morphing method" @default.
- W4223907654 cites W1964357740 @default.
- W4223907654 cites W1980678753 @default.
- W4223907654 cites W1983181198 @default.
- W4223907654 cites W1988744163 @default.
- W4223907654 cites W1993224695 @default.
- W4223907654 cites W1994159989 @default.
- W4223907654 cites W1994848651 @default.
- W4223907654 cites W1998950015 @default.
- W4223907654 cites W2012884208 @default.
- W4223907654 cites W2018108452 @default.
- W4223907654 cites W2024151921 @default.
- W4223907654 cites W2024697317 @default.
- W4223907654 cites W2032550046 @default.
- W4223907654 cites W2056717290 @default.
- W4223907654 cites W2065239170 @default.
- W4223907654 cites W2083350555 @default.
- W4223907654 cites W2118789358 @default.
- W4223907654 cites W2151833886 @default.
- W4223907654 cites W2162884050 @default.
- W4223907654 cites W2166575557 @default.
- W4223907654 cites W2222296162 @default.
- W4223907654 cites W2462828516 @default.
- W4223907654 cites W2507531441 @default.
- W4223907654 cites W2598949456 @default.
- W4223907654 cites W2681008204 @default.
- W4223907654 cites W2740556500 @default.
- W4223907654 cites W2761209363 @default.
- W4223907654 cites W2769146202 @default.
- W4223907654 cites W2884582919 @default.
- W4223907654 cites W2886221327 @default.
- W4223907654 cites W2912537877 @default.
- W4223907654 cites W2914489169 @default.
- W4223907654 cites W2937526571 @default.
- W4223907654 cites W2964381864 @default.
- W4223907654 cites W2990871095 @default.
- W4223907654 cites W3013602099 @default.
- W4223907654 cites W3036136199 @default.
- W4223907654 cites W3081124016 @default.
- W4223907654 cites W3097828326 @default.
- W4223907654 cites W3119256008 @default.
- W4223907654 cites W3127517162 @default.
- W4223907654 cites W3134913841 @default.
- W4223907654 cites W3135042065 @default.
- W4223907654 cites W3135526356 @default.
- W4223907654 cites W3181438120 @default.
- W4223907654 cites W3184650072 @default.
- W4223907654 cites W3201823247 @default.
- W4223907654 cites W4200280687 @default.
- W4223907654 cites W4205546554 @default.
- W4223907654 cites W4214863220 @default.
- W4223907654 doi "https://doi.org/10.1016/j.ijmecsci.2022.107227" @default.
- W4223907654 hasPublicationYear "2022" @default.
- W4223907654 type Work @default.
- W4223907654 citedByCount "1" @default.
- W4223907654 countsByYear W42239076542022 @default.
- W4223907654 crossrefType "journal-article" @default.
- W4223907654 hasAuthorship W4223907654A5008379942 @default.
- W4223907654 hasAuthorship W4223907654A5010510594 @default.
- W4223907654 hasConcept C107157880 @default.
- W4223907654 hasConcept C114793014 @default.
- W4223907654 hasConcept C121332964 @default.
- W4223907654 hasConcept C124101348 @default.
- W4223907654 hasConcept C127313418 @default.
- W4223907654 hasConcept C127413603 @default.
- W4223907654 hasConcept C13393347 @default.
- W4223907654 hasConcept C135628077 @default.
- W4223907654 hasConcept C137776501 @default.
- W4223907654 hasConcept C139002025 @default.
- W4223907654 hasConcept C154945302 @default.
- W4223907654 hasConcept C2524010 @default.
- W4223907654 hasConcept C2780312720 @default.
- W4223907654 hasConcept C29513896 @default.
- W4223907654 hasConcept C33923547 @default.
- W4223907654 hasConcept C38349280 @default.
- W4223907654 hasConcept C41008148 @default.
- W4223907654 hasConcept C50637493 @default.
- W4223907654 hasConcept C57879066 @default.
- W4223907654 hasConcept C6557445 @default.
- W4223907654 hasConcept C66938386 @default.
- W4223907654 hasConcept C72117827 @default.
- W4223907654 hasConcept C72921944 @default.
- W4223907654 hasConcept C86803240 @default.
- W4223907654 hasConcept C97257150 @default.
- W4223907654 hasConceptScore W4223907654C107157880 @default.
- W4223907654 hasConceptScore W4223907654C114793014 @default.
- W4223907654 hasConceptScore W4223907654C121332964 @default.
- W4223907654 hasConceptScore W4223907654C124101348 @default.
- W4223907654 hasConceptScore W4223907654C127313418 @default.
- W4223907654 hasConceptScore W4223907654C127413603 @default.
- W4223907654 hasConceptScore W4223907654C13393347 @default.
- W4223907654 hasConceptScore W4223907654C135628077 @default.