Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223913070> ?p ?o ?g. }
- W4223913070 abstract "Many options are currently available for sepsis surveillance clinical decision support (CDS) from electronic medical record (EMR) vendors, third party, and homegrown models drawing on rule-based (RB) and machine learning (ML) algorithms. This study explores sepsis CDS implementation from the perspective of implementation leads by describing the motivations, tool choices, and implementation experiences of a diverse group of implementers.Semi-structured interviews were conducted with and a questionnaire was administered to 21 hospital leaders overseeing CDS implementation at 15 US medical centers. Participants were recruited via convenience sampling. Responses were coded by 2 coders with consensus approach and inductively analyzed for themes.Use of sepsis CDS is motivated in part by quality metrics for sepsis patients. Choice of tool is driven by ease of integration, customization capability, and perceived predictive potential. Implementation processes for these CDS tools are complex, time-consuming, interdisciplinary undertakings resulting in heterogeneous choice of tools and workflow integration. To improve clinician acceptance, implementers addressed both optimization of the alerts as well as clinician understanding and buy in. More distrust and confusion was reported for ML models, as compared to RB models. Respondents described a variety of approaches to overcome implementation barriers; these approaches related to alert firing, content, integration, and buy-in.While there are shared socio-technical challenges of implementing CDS for both RB and ML models, attention to user education, support, expectation management, and dissemination of effective practices may improve feasibility and effectiveness of ML models in quality improvement efforts.Further implementation science research is needed to determine real world efficacy of these tools. Clinician acceptance is a significant barrier to sepsis CDS implementation. Successful implementation of less clinically intuitive ML models may require additional attention to user confusion and distrust." @default.
- W4223913070 created "2022-04-19" @default.
- W4223913070 creator A5027572126 @default.
- W4223913070 creator A5032966967 @default.
- W4223913070 creator A5080056102 @default.
- W4223913070 creator A5087376979 @default.
- W4223913070 date "2022-04-06" @default.
- W4223913070 modified "2023-10-01" @default.
- W4223913070 title "Implementation approaches and barriers for rule-based and machine learning-based sepsis risk prediction tools: a qualitative study" @default.
- W4223913070 cites W11356396 @default.
- W4223913070 cites W141680023 @default.
- W4223913070 cites W1710516595 @default.
- W4223913070 cites W1807259383 @default.
- W4223913070 cites W1921056797 @default.
- W4223913070 cites W1969760843 @default.
- W4223913070 cites W2010505320 @default.
- W4223913070 cites W2034769820 @default.
- W4223913070 cites W2083009186 @default.
- W4223913070 cites W2110709878 @default.
- W4223913070 cites W2113326913 @default.
- W4223913070 cites W2138416777 @default.
- W4223913070 cites W2140410010 @default.
- W4223913070 cites W2183670545 @default.
- W4223913070 cites W2200122354 @default.
- W4223913070 cites W2282181907 @default.
- W4223913070 cites W2341842571 @default.
- W4223913070 cites W2405556588 @default.
- W4223913070 cites W2431382972 @default.
- W4223913070 cites W2523834880 @default.
- W4223913070 cites W2754799758 @default.
- W4223913070 cites W2755626276 @default.
- W4223913070 cites W2763766763 @default.
- W4223913070 cites W2768083064 @default.
- W4223913070 cites W2773171260 @default.
- W4223913070 cites W2884768864 @default.
- W4223913070 cites W2892741787 @default.
- W4223913070 cites W2905983446 @default.
- W4223913070 cites W2921640653 @default.
- W4223913070 cites W2945543078 @default.
- W4223913070 cites W2947151330 @default.
- W4223913070 cites W2968919852 @default.
- W4223913070 cites W2980177178 @default.
- W4223913070 cites W2981296841 @default.
- W4223913070 cites W2987874871 @default.
- W4223913070 cites W2992764683 @default.
- W4223913070 cites W3106297998 @default.
- W4223913070 cites W3174786846 @default.
- W4223913070 cites W3177107382 @default.
- W4223913070 doi "https://doi.org/10.1093/jamiaopen/ooac022" @default.
- W4223913070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35474719" @default.
- W4223913070 hasPublicationYear "2022" @default.
- W4223913070 type Work @default.
- W4223913070 citedByCount "8" @default.
- W4223913070 countsByYear W42239130702022 @default.
- W4223913070 countsByYear W42239130702023 @default.
- W4223913070 crossrefType "journal-article" @default.
- W4223913070 hasAuthorship W4223913070A5027572126 @default.
- W4223913070 hasAuthorship W4223913070A5032966967 @default.
- W4223913070 hasAuthorship W4223913070A5080056102 @default.
- W4223913070 hasAuthorship W4223913070A5087376979 @default.
- W4223913070 hasBestOaLocation W42239130701 @default.
- W4223913070 hasConcept C107327155 @default.
- W4223913070 hasConcept C111472728 @default.
- W4223913070 hasConcept C127413603 @default.
- W4223913070 hasConcept C136197465 @default.
- W4223913070 hasConcept C136764020 @default.
- W4223913070 hasConcept C138885662 @default.
- W4223913070 hasConcept C154945302 @default.
- W4223913070 hasConcept C15744967 @default.
- W4223913070 hasConcept C177212765 @default.
- W4223913070 hasConcept C183003079 @default.
- W4223913070 hasConcept C195094911 @default.
- W4223913070 hasConcept C2778321746 @default.
- W4223913070 hasConcept C2779530757 @default.
- W4223913070 hasConcept C41008148 @default.
- W4223913070 hasConcept C542102704 @default.
- W4223913070 hasConcept C56739046 @default.
- W4223913070 hasConcept C63527458 @default.
- W4223913070 hasConcept C77088390 @default.
- W4223913070 hasConceptScore W4223913070C107327155 @default.
- W4223913070 hasConceptScore W4223913070C111472728 @default.
- W4223913070 hasConceptScore W4223913070C127413603 @default.
- W4223913070 hasConceptScore W4223913070C136197465 @default.
- W4223913070 hasConceptScore W4223913070C136764020 @default.
- W4223913070 hasConceptScore W4223913070C138885662 @default.
- W4223913070 hasConceptScore W4223913070C154945302 @default.
- W4223913070 hasConceptScore W4223913070C15744967 @default.
- W4223913070 hasConceptScore W4223913070C177212765 @default.
- W4223913070 hasConceptScore W4223913070C183003079 @default.
- W4223913070 hasConceptScore W4223913070C195094911 @default.
- W4223913070 hasConceptScore W4223913070C2778321746 @default.
- W4223913070 hasConceptScore W4223913070C2779530757 @default.
- W4223913070 hasConceptScore W4223913070C41008148 @default.
- W4223913070 hasConceptScore W4223913070C542102704 @default.
- W4223913070 hasConceptScore W4223913070C56739046 @default.
- W4223913070 hasConceptScore W4223913070C63527458 @default.
- W4223913070 hasConceptScore W4223913070C77088390 @default.
- W4223913070 hasFunder F4320332161 @default.
- W4223913070 hasIssue "2" @default.
- W4223913070 hasLocation W42239130701 @default.