Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223916321> ?p ?o ?g. }
- W4223916321 endingPage "134608" @default.
- W4223916321 startingPage "134608" @default.
- W4223916321 abstract "China has implemented two national clean air actions in 2013-2017 and 2018-2020, respectively, with the aim of reducing primary emissions and hence improving air quality at a national level. It is important to examine the effectiveness of such emission reductions and assess the resulting changes in air quality. However, such evaluation is difficult as meteorological factors can amplify, or obscure the changes of air pollutants, in addition to the emission reduction. In this study, we applied the random forest machine learning technique to decouple meteorological influences from emissions changes, and examined the deweathered trends of air pollutants in 12 Chinese mega-cities during 2013-2020. The observed concentrations of all criteria pollutants except O3 showed significant declines from 2013 to 2020, with PM2.5 annual decline rates of 6-9% in most cities. In contrast, O3 concentrations increased with annual growth rates of 1-9%. Compared with the observed results, all the pollutants showed smoothed but similar variation in trend and annual rate-of-change after weather normalization. The response of O3 to NO2 concentrations indicated significant regional differences in photochemical regimes, and the differences between observed and deweathered results provided implications for volatile organic compound emission reductions in O3 pollution mitigation. We further evaluated the effectiveness of first and second clean air actions by removing the meteorological influence. We found that the meteorology can make negative or positive contribution in reducing pollutant concentrations from emission reduction, depending on type of pollutants, locations, and time period. Among the 12 mega-cities, only Beijing showed a positive meteorological contribution in amplifying reductions in main pollutants except O3 during both clean air action periods. Considering the large and variable impact of meteorological effects in changing air quality, we suggest that similar deweathered analysis is needed as a routine policy evaluation tool on a regional basis." @default.
- W4223916321 created "2022-04-19" @default.
- W4223916321 creator A5001636682 @default.
- W4223916321 creator A5008718870 @default.
- W4223916321 creator A5022189745 @default.
- W4223916321 creator A5046250920 @default.
- W4223916321 creator A5067800126 @default.
- W4223916321 creator A5081085331 @default.
- W4223916321 creator A5089274932 @default.
- W4223916321 date "2022-08-01" @default.
- W4223916321 modified "2023-10-18" @default.
- W4223916321 title "Evaluating the real changes of air quality due to clean air actions using a machine learning technique: Results from 12 Chinese mega-cities during 2013–2020" @default.
- W4223916321 cites W1432530062 @default.
- W4223916321 cites W1440920288 @default.
- W4223916321 cites W1977134370 @default.
- W4223916321 cites W2057462398 @default.
- W4223916321 cites W2082481714 @default.
- W4223916321 cites W2088031441 @default.
- W4223916321 cites W2141180304 @default.
- W4223916321 cites W2460297783 @default.
- W4223916321 cites W2485393969 @default.
- W4223916321 cites W2543572554 @default.
- W4223916321 cites W2566332937 @default.
- W4223916321 cites W2610316289 @default.
- W4223916321 cites W2617751561 @default.
- W4223916321 cites W2751172088 @default.
- W4223916321 cites W2766329946 @default.
- W4223916321 cites W2767085346 @default.
- W4223916321 cites W2781683047 @default.
- W4223916321 cites W2786588599 @default.
- W4223916321 cites W2800203331 @default.
- W4223916321 cites W2802124409 @default.
- W4223916321 cites W2807833642 @default.
- W4223916321 cites W2883095117 @default.
- W4223916321 cites W2884390151 @default.
- W4223916321 cites W2884846562 @default.
- W4223916321 cites W2898556519 @default.
- W4223916321 cites W2906348795 @default.
- W4223916321 cites W2908510209 @default.
- W4223916321 cites W2921254207 @default.
- W4223916321 cites W2940571302 @default.
- W4223916321 cites W2971807556 @default.
- W4223916321 cites W2984317624 @default.
- W4223916321 cites W2990513755 @default.
- W4223916321 cites W2990705976 @default.
- W4223916321 cites W2990965051 @default.
- W4223916321 cites W3000311269 @default.
- W4223916321 cites W3026504503 @default.
- W4223916321 cites W3038444436 @default.
- W4223916321 cites W3041135923 @default.
- W4223916321 cites W3041160329 @default.
- W4223916321 cites W3045818358 @default.
- W4223916321 cites W3080656438 @default.
- W4223916321 cites W3113188157 @default.
- W4223916321 cites W3134337617 @default.
- W4223916321 cites W3158517626 @default.
- W4223916321 cites W3175453366 @default.
- W4223916321 cites W2952880395 @default.
- W4223916321 doi "https://doi.org/10.1016/j.chemosphere.2022.134608" @default.
- W4223916321 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35430204" @default.
- W4223916321 hasPublicationYear "2022" @default.
- W4223916321 type Work @default.
- W4223916321 citedByCount "11" @default.
- W4223916321 countsByYear W42239163212022 @default.
- W4223916321 countsByYear W42239163212023 @default.
- W4223916321 crossrefType "journal-article" @default.
- W4223916321 hasAuthorship W4223916321A5001636682 @default.
- W4223916321 hasAuthorship W4223916321A5008718870 @default.
- W4223916321 hasAuthorship W4223916321A5022189745 @default.
- W4223916321 hasAuthorship W4223916321A5046250920 @default.
- W4223916321 hasAuthorship W4223916321A5067800126 @default.
- W4223916321 hasAuthorship W4223916321A5081085331 @default.
- W4223916321 hasAuthorship W4223916321A5089274932 @default.
- W4223916321 hasBestOaLocation W42239163211 @default.
- W4223916321 hasConcept C126314574 @default.
- W4223916321 hasConcept C127040729 @default.
- W4223916321 hasConcept C127313418 @default.
- W4223916321 hasConcept C136264566 @default.
- W4223916321 hasConcept C153294291 @default.
- W4223916321 hasConcept C162324750 @default.
- W4223916321 hasConcept C166957645 @default.
- W4223916321 hasConcept C178790620 @default.
- W4223916321 hasConcept C185592680 @default.
- W4223916321 hasConcept C18903297 @default.
- W4223916321 hasConcept C191935318 @default.
- W4223916321 hasConcept C205649164 @default.
- W4223916321 hasConcept C2778304055 @default.
- W4223916321 hasConcept C2987853052 @default.
- W4223916321 hasConcept C39432304 @default.
- W4223916321 hasConcept C521259446 @default.
- W4223916321 hasConcept C559116025 @default.
- W4223916321 hasConcept C82685317 @default.
- W4223916321 hasConcept C86803240 @default.
- W4223916321 hasConcept C87717796 @default.
- W4223916321 hasConcept C91586092 @default.
- W4223916321 hasConceptScore W4223916321C126314574 @default.
- W4223916321 hasConceptScore W4223916321C127040729 @default.
- W4223916321 hasConceptScore W4223916321C127313418 @default.