Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223919222> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4223919222 endingPage "724" @default.
- W4223919222 startingPage "718" @default.
- W4223919222 abstract "Liver cancer lesions on Computed Tomography (CT) withholds a great amount of data, which is not visible to the radiologists and radiographer. Radiomics features can be extracted from the lesions and used to train Machine Learning (ML) algorithms to predict between tumour and liver tissue. The purpose of this study was to investigate and classify Radiomics features extracted from liver tumours and normal liver tissue in a limited CT dataset.The Liver Tumour Segmentation Benchmark (LiTS) dataset consisting of 131 CT scans of the liver with segmentations of tumour tissue and healthy liver was used to extract Radiomic features. Extracted Radiomic features included size, shape, and location extracted with morphological and statistical techniques according to the International Symposium on Biomedical Imaging manual. Relevant features was selected with chi2 correlation and principal component analysis (PCA) with tumour and healthy liver tissue as outcome according to a consensus between three experienced radiologists. Logistic regression, random forest and support vector machine was used to train and validate the dataset with a 10-fold cross-validation method and the Grid Search as hyper-parameter tuning. Performance was evaluated with sensitivity, specificity and accuracy.The performance of the ML algorithms achieved sensitivities, specificities and accuracy ranging from 96.30% (95% CI: 81.03%-99.91%) to 100.00% (95% CI: 86.77%-100.00%), 91.30% (95% CI: 71.96%-98.93%) to 100.00% (95% CI: 83.89%-100.00%)and 94.00% (95% CI: 83.45%-98.75%) to 100.00% (95% CI: 92.45%-100.00%), respectively.ML algorithms classifies Radiomics features extracted from healthy liver and tumour tissue with perfect accuracy. The Radiomics signature allows for a prognostic biomarker for hepatic tumour screening on liver CT.Differentiation between tumour and liver tissue with Radiomics ML algorithms have the potential to increase the diagnostic accuracy, assist in the decision-making of supplementary multiphasic enhanced medical imaging, as well as for developing novel prognostic biomarkers for liver cancer patients." @default.
- W4223919222 created "2022-04-19" @default.
- W4223919222 creator A5036664813 @default.
- W4223919222 date "2022-08-01" @default.
- W4223919222 modified "2023-09-26" @default.
- W4223919222 title "Comparing Radiomics features of tumour and healthy liver tissue in a limited CT dataset: A machine learning study" @default.
- W4223919222 cites W2003304826 @default.
- W4223919222 cites W2019090719 @default.
- W4223919222 cites W2026616100 @default.
- W4223919222 cites W2044465660 @default.
- W4223919222 cites W2059432853 @default.
- W4223919222 cites W2097475056 @default.
- W4223919222 cites W2112796928 @default.
- W4223919222 cites W2126196500 @default.
- W4223919222 cites W2144795120 @default.
- W4223919222 cites W2174661749 @default.
- W4223919222 cites W2587114521 @default.
- W4223919222 cites W2603878070 @default.
- W4223919222 cites W2763355946 @default.
- W4223919222 cites W2767346095 @default.
- W4223919222 cites W2900204660 @default.
- W4223919222 cites W2900827782 @default.
- W4223919222 cites W2901332986 @default.
- W4223919222 cites W2958287596 @default.
- W4223919222 cites W2970283707 @default.
- W4223919222 cites W3011130656 @default.
- W4223919222 cites W3128646645 @default.
- W4223919222 cites W4243625103 @default.
- W4223919222 doi "https://doi.org/10.1016/j.radi.2022.03.015" @default.
- W4223919222 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35428570" @default.
- W4223919222 hasPublicationYear "2022" @default.
- W4223919222 type Work @default.
- W4223919222 citedByCount "2" @default.
- W4223919222 countsByYear W42239192222022 @default.
- W4223919222 crossrefType "journal-article" @default.
- W4223919222 hasAuthorship W4223919222A5036664813 @default.
- W4223919222 hasBestOaLocation W42239192221 @default.
- W4223919222 hasConcept C119857082 @default.
- W4223919222 hasConcept C121608353 @default.
- W4223919222 hasConcept C126322002 @default.
- W4223919222 hasConcept C126838900 @default.
- W4223919222 hasConcept C151956035 @default.
- W4223919222 hasConcept C154945302 @default.
- W4223919222 hasConcept C169258074 @default.
- W4223919222 hasConcept C2776231280 @default.
- W4223919222 hasConcept C2778559731 @default.
- W4223919222 hasConcept C2989005 @default.
- W4223919222 hasConcept C41008148 @default.
- W4223919222 hasConcept C544519230 @default.
- W4223919222 hasConcept C71924100 @default.
- W4223919222 hasConceptScore W4223919222C119857082 @default.
- W4223919222 hasConceptScore W4223919222C121608353 @default.
- W4223919222 hasConceptScore W4223919222C126322002 @default.
- W4223919222 hasConceptScore W4223919222C126838900 @default.
- W4223919222 hasConceptScore W4223919222C151956035 @default.
- W4223919222 hasConceptScore W4223919222C154945302 @default.
- W4223919222 hasConceptScore W4223919222C169258074 @default.
- W4223919222 hasConceptScore W4223919222C2776231280 @default.
- W4223919222 hasConceptScore W4223919222C2778559731 @default.
- W4223919222 hasConceptScore W4223919222C2989005 @default.
- W4223919222 hasConceptScore W4223919222C41008148 @default.
- W4223919222 hasConceptScore W4223919222C544519230 @default.
- W4223919222 hasConceptScore W4223919222C71924100 @default.
- W4223919222 hasIssue "3" @default.
- W4223919222 hasLocation W42239192221 @default.
- W4223919222 hasLocation W42239192222 @default.
- W4223919222 hasLocation W42239192223 @default.
- W4223919222 hasOpenAccess W4223919222 @default.
- W4223919222 hasPrimaryLocation W42239192221 @default.
- W4223919222 hasRelatedWork W2911455822 @default.
- W4223919222 hasRelatedWork W3174196512 @default.
- W4223919222 hasRelatedWork W3198710639 @default.
- W4223919222 hasRelatedWork W4212963941 @default.
- W4223919222 hasRelatedWork W4239706975 @default.
- W4223919222 hasRelatedWork W4283313480 @default.
- W4223919222 hasRelatedWork W4285237370 @default.
- W4223919222 hasRelatedWork W4308191010 @default.
- W4223919222 hasRelatedWork W4321636153 @default.
- W4223919222 hasRelatedWork W4323021782 @default.
- W4223919222 hasVolume "28" @default.
- W4223919222 isParatext "false" @default.
- W4223919222 isRetracted "false" @default.
- W4223919222 workType "article" @default.