Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223920619> ?p ?o ?g. }
- W4223920619 endingPage "417" @default.
- W4223920619 startingPage "410" @default.
- W4223920619 abstract "The human auditory system extracts valid information in noisy environments while ignoring other distractions, relying primarily on auditory attention. Studies have shown that the cerebral cortex responds differently to the sound source locations and that auditory attention is time-varying. In this work, we proposed a data-driven encoder-decoder architecture model for auditory attention detection (AAD), denoted as AAD-transformer. The model contains temporal self-attention and channel attention modules and could reconstruct the speech envelope by dynamically assigning weights according to the temporal self-attention and channel attention mechanisms of electroencephalogram (EEG). In addition, the model is conducted based on data-driven without additional preprocessing steps. The proposed model was validated using a binaural listening dataset, in which the speech stimulus was Mandarin, and compared with other models. The results showed that the decoding accuracy of the AAD-transformer in the 0.15-second decoding time window was 76.35%, which was much higher than the accuracy of the linear model using temporal response function in the 3-second decoding time window (increased by 16.27%). This work provides a novel auditory attention detection method, and the data-driven characteristic makes it convenient for neural-steered hearing devices, especially those who speak tonal languages." @default.
- W4223920619 created "2022-04-19" @default.
- W4223920619 creator A5002229225 @default.
- W4223920619 creator A5011769657 @default.
- W4223920619 creator A5012331857 @default.
- W4223920619 creator A5018056832 @default.
- W4223920619 creator A5025461617 @default.
- W4223920619 creator A5065536627 @default.
- W4223920619 date "2022-08-01" @default.
- W4223920619 modified "2023-09-30" @default.
- W4223920619 title "Decoding selective auditory attention with EEG using a transformer model" @default.
- W4223920619 cites W12773428 @default.
- W4223920619 cites W1965972662 @default.
- W4223920619 cites W1974932989 @default.
- W4223920619 cites W1975115027 @default.
- W4223920619 cites W1977630746 @default.
- W4223920619 cites W1989881358 @default.
- W4223920619 cites W2005066437 @default.
- W4223920619 cites W2010501479 @default.
- W4223920619 cites W2019630663 @default.
- W4223920619 cites W2026895393 @default.
- W4223920619 cites W2027250573 @default.
- W4223920619 cites W2038156098 @default.
- W4223920619 cites W2067393309 @default.
- W4223920619 cites W2082183045 @default.
- W4223920619 cites W2082451326 @default.
- W4223920619 cites W2091432036 @default.
- W4223920619 cites W2118980133 @default.
- W4223920619 cites W2128681980 @default.
- W4223920619 cites W2138164020 @default.
- W4223920619 cites W2150597844 @default.
- W4223920619 cites W2157617037 @default.
- W4223920619 cites W2158904676 @default.
- W4223920619 cites W2194775991 @default.
- W4223920619 cites W2408166852 @default.
- W4223920619 cites W2553024757 @default.
- W4223920619 cites W2558802391 @default.
- W4223920619 cites W2586872202 @default.
- W4223920619 cites W2606067354 @default.
- W4223920619 cites W2742722178 @default.
- W4223920619 cites W2767841979 @default.
- W4223920619 cites W2775454033 @default.
- W4223920619 cites W2778438370 @default.
- W4223920619 cites W2923248388 @default.
- W4223920619 cites W2948163068 @default.
- W4223920619 cites W2950767783 @default.
- W4223920619 cites W2968050947 @default.
- W4223920619 cites W2978943562 @default.
- W4223920619 cites W2980767905 @default.
- W4223920619 cites W2981815944 @default.
- W4223920619 cites W2990116258 @default.
- W4223920619 cites W3038121656 @default.
- W4223920619 cites W3086573485 @default.
- W4223920619 cites W3095277453 @default.
- W4223920619 cites W3102455230 @default.
- W4223920619 cites W3112626072 @default.
- W4223920619 cites W3117748486 @default.
- W4223920619 cites W3131166446 @default.
- W4223920619 cites W3159696612 @default.
- W4223920619 cites W3193706553 @default.
- W4223920619 doi "https://doi.org/10.1016/j.ymeth.2022.04.009" @default.
- W4223920619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35447360" @default.
- W4223920619 hasPublicationYear "2022" @default.
- W4223920619 type Work @default.
- W4223920619 citedByCount "8" @default.
- W4223920619 countsByYear W42239206192022 @default.
- W4223920619 countsByYear W42239206192023 @default.
- W4223920619 crossrefType "journal-article" @default.
- W4223920619 hasAuthorship W4223920619A5002229225 @default.
- W4223920619 hasAuthorship W4223920619A5011769657 @default.
- W4223920619 hasAuthorship W4223920619A5012331857 @default.
- W4223920619 hasAuthorship W4223920619A5018056832 @default.
- W4223920619 hasAuthorship W4223920619A5025461617 @default.
- W4223920619 hasAuthorship W4223920619A5065536627 @default.
- W4223920619 hasBestOaLocation W42239206191 @default.
- W4223920619 hasConcept C111919701 @default.
- W4223920619 hasConcept C11413529 @default.
- W4223920619 hasConcept C118505674 @default.
- W4223920619 hasConcept C121332964 @default.
- W4223920619 hasConcept C153180895 @default.
- W4223920619 hasConcept C154945302 @default.
- W4223920619 hasConcept C15744967 @default.
- W4223920619 hasConcept C165801399 @default.
- W4223920619 hasConcept C169760540 @default.
- W4223920619 hasConcept C201247586 @default.
- W4223920619 hasConcept C2780297895 @default.
- W4223920619 hasConcept C28490314 @default.
- W4223920619 hasConcept C34736171 @default.
- W4223920619 hasConcept C40743351 @default.
- W4223920619 hasConcept C41008148 @default.
- W4223920619 hasConcept C522805319 @default.
- W4223920619 hasConcept C57273362 @default.
- W4223920619 hasConcept C62520636 @default.
- W4223920619 hasConcept C66322947 @default.
- W4223920619 hasConceptScore W4223920619C111919701 @default.
- W4223920619 hasConceptScore W4223920619C11413529 @default.
- W4223920619 hasConceptScore W4223920619C118505674 @default.
- W4223920619 hasConceptScore W4223920619C121332964 @default.