Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223941692> ?p ?o ?g. }
- W4223941692 endingPage "25" @default.
- W4223941692 startingPage "16" @default.
- W4223941692 abstract "Job shop scheduling problems are NP-hard problems that have been studied extensively in the literature as well as in real-life. Many factories all over the world produce worth millions of dollars with job shop type production systems. It is crucial to use effective production scheduling methods to reduce costs and increase productivity. Hyperheuristics are fast-implementing, low-cost, and powerful enough to deal with different problems effectively since they need limited problem-specific information. In this paper, a genetic algorithm-based hyperheuristic (GAHH) approach is proposed for job shop scheduling problems. Twenty-six dispatching rules are used as low-level heuristics. We use a set of benchmark problems from OR-Library to test the proposed algorithm. The performance of the proposed approach is compared with genetic algorithm, simulating annealing, particle swarm optimization and some of dispatching rules. Computational experiments show that the proposed genetic algorithm-based hyperheuristic approach finds optimal results or produces better solutions than compared methods." @default.
- W4223941692 created "2022-04-19" @default.
- W4223941692 creator A5050758328 @default.
- W4223941692 creator A5069391786 @default.
- W4223941692 date "2022-04-15" @default.
- W4223941692 modified "2023-10-18" @default.
- W4223941692 title "Job shop scheduling with genetic algorithm-based hyperheuristic approach" @default.
- W4223941692 cites W1527172735 @default.
- W4223941692 cites W1555410326 @default.
- W4223941692 cites W1665359133 @default.
- W4223941692 cites W1814515812 @default.
- W4223941692 cites W1964581121 @default.
- W4223941692 cites W1976618788 @default.
- W4223941692 cites W1984543024 @default.
- W4223941692 cites W1993122005 @default.
- W4223941692 cites W1998714382 @default.
- W4223941692 cites W1999596870 @default.
- W4223941692 cites W2001080175 @default.
- W4223941692 cites W2008013109 @default.
- W4223941692 cites W2009883530 @default.
- W4223941692 cites W2014034914 @default.
- W4223941692 cites W2015178104 @default.
- W4223941692 cites W2024085737 @default.
- W4223941692 cites W2028118250 @default.
- W4223941692 cites W2031409887 @default.
- W4223941692 cites W2036926728 @default.
- W4223941692 cites W2041489433 @default.
- W4223941692 cites W2043932195 @default.
- W4223941692 cites W2051898624 @default.
- W4223941692 cites W2055748844 @default.
- W4223941692 cites W2059771702 @default.
- W4223941692 cites W2064661781 @default.
- W4223941692 cites W2065029766 @default.
- W4223941692 cites W2072441740 @default.
- W4223941692 cites W2076785727 @default.
- W4223941692 cites W2077906280 @default.
- W4223941692 cites W2078740169 @default.
- W4223941692 cites W2084622170 @default.
- W4223941692 cites W2087091680 @default.
- W4223941692 cites W2087376002 @default.
- W4223941692 cites W2087411299 @default.
- W4223941692 cites W2108141007 @default.
- W4223941692 cites W2111244700 @default.
- W4223941692 cites W2136485110 @default.
- W4223941692 cites W2140759234 @default.
- W4223941692 cites W2145557330 @default.
- W4223941692 cites W2169209574 @default.
- W4223941692 cites W2248981153 @default.
- W4223941692 cites W2275596639 @default.
- W4223941692 cites W2286067128 @default.
- W4223941692 cites W2321430542 @default.
- W4223941692 cites W2344265714 @default.
- W4223941692 cites W2693176153 @default.
- W4223941692 cites W2980385837 @default.
- W4223941692 cites W3139154826 @default.
- W4223941692 cites W3172596440 @default.
- W4223941692 cites W4211023471 @default.
- W4223941692 doi "https://doi.org/10.35860/iarej.1018604" @default.
- W4223941692 hasPublicationYear "2022" @default.
- W4223941692 type Work @default.
- W4223941692 citedByCount "4" @default.
- W4223941692 countsByYear W42239416922023 @default.
- W4223941692 crossrefType "journal-article" @default.
- W4223941692 hasAuthorship W4223941692A5050758328 @default.
- W4223941692 hasAuthorship W4223941692A5069391786 @default.
- W4223941692 hasBestOaLocation W42239416921 @default.
- W4223941692 hasConcept C111919701 @default.
- W4223941692 hasConcept C11413529 @default.
- W4223941692 hasConcept C126255220 @default.
- W4223941692 hasConcept C126980161 @default.
- W4223941692 hasConcept C127705205 @default.
- W4223941692 hasConcept C158336966 @default.
- W4223941692 hasConcept C206729178 @default.
- W4223941692 hasConcept C2777243215 @default.
- W4223941692 hasConcept C33923547 @default.
- W4223941692 hasConcept C41008148 @default.
- W4223941692 hasConcept C55416958 @default.
- W4223941692 hasConcept C68387754 @default.
- W4223941692 hasConcept C85617194 @default.
- W4223941692 hasConcept C8880873 @default.
- W4223941692 hasConceptScore W4223941692C111919701 @default.
- W4223941692 hasConceptScore W4223941692C11413529 @default.
- W4223941692 hasConceptScore W4223941692C126255220 @default.
- W4223941692 hasConceptScore W4223941692C126980161 @default.
- W4223941692 hasConceptScore W4223941692C127705205 @default.
- W4223941692 hasConceptScore W4223941692C158336966 @default.
- W4223941692 hasConceptScore W4223941692C206729178 @default.
- W4223941692 hasConceptScore W4223941692C2777243215 @default.
- W4223941692 hasConceptScore W4223941692C33923547 @default.
- W4223941692 hasConceptScore W4223941692C41008148 @default.
- W4223941692 hasConceptScore W4223941692C55416958 @default.
- W4223941692 hasConceptScore W4223941692C68387754 @default.
- W4223941692 hasConceptScore W4223941692C85617194 @default.
- W4223941692 hasConceptScore W4223941692C8880873 @default.
- W4223941692 hasIssue "1" @default.
- W4223941692 hasLocation W42239416921 @default.
- W4223941692 hasLocation W42239416922 @default.
- W4223941692 hasOpenAccess W4223941692 @default.