Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223947398> ?p ?o ?g. }
- W4223947398 endingPage "24" @default.
- W4223947398 startingPage "1" @default.
- W4223947398 abstract "Urban planning refers to the efforts of designing land-use configurations given a region. However, to obtain effective urban plans, urban experts have to spend much time and effort analyzing sophisticated planning constraints based on domain knowledge and personal experiences. To alleviate the heavy burden of them and produce consistent urban plans, we want to ask that can AI accelerate the urban planning process, so that human planners only adjust generated configurations for specific needs? The recent advance of deep generative models provides a possible answer, which inspires us to automate urban planning from an adversarial learning perspective. However, three major challenges arise: (1) how to define a quantitative land-use configuration? (2) how to automate configuration planning? (3) how to evaluate the quality of a generated configuration? In this article, we systematically address the three challenges. Specifically, (1) We define a land-use configuration as a longitude-latitude-channel tensor. (2) We formulate the automated urban planning problem into a task of deep generative learning. The objective is to generate a configuration tensor given the surrounding contexts of a target region. In particular, we first construct spatial graphs using geographic and human mobility data crawled from websites to learn graph representations. We then combine each target area and its surrounding context representations as a tuple, and categorize all tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Next, we develop an adversarial learning framework, in which a generator takes the surrounding context representations as input to generate a land-use configuration, and a discriminator learns to distinguish between positive and negative samples. (3) We provide quantitative evaluation metrics and conduct extensive experiments to demonstrate the effectiveness of our framework." @default.
- W4223947398 created "2022-04-19" @default.
- W4223947398 creator A5032187620 @default.
- W4223947398 creator A5036270316 @default.
- W4223947398 creator A5038002204 @default.
- W4223947398 creator A5049681022 @default.
- W4223947398 creator A5052809293 @default.
- W4223947398 creator A5091745851 @default.
- W4223947398 date "2023-01-17" @default.
- W4223947398 modified "2023-10-07" @default.
- W4223947398 title "Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation" @default.
- W4223947398 cites W1486484692 @default.
- W4223947398 cites W1548628719 @default.
- W4223947398 cites W1990444226 @default.
- W4223947398 cites W2040301466 @default.
- W4223947398 cites W2071398398 @default.
- W4223947398 cites W2127638825 @default.
- W4223947398 cites W2343129607 @default.
- W4223947398 cites W2533021821 @default.
- W4223947398 cites W2593768305 @default.
- W4223947398 cites W2594668508 @default.
- W4223947398 cites W2611467245 @default.
- W4223947398 cites W2771084251 @default.
- W4223947398 cites W2799784543 @default.
- W4223947398 cites W2802983566 @default.
- W4223947398 cites W2803304669 @default.
- W4223947398 cites W2808766325 @default.
- W4223947398 cites W2810586154 @default.
- W4223947398 cites W2897876396 @default.
- W4223947398 cites W2899647666 @default.
- W4223947398 cites W2901188091 @default.
- W4223947398 cites W2903883820 @default.
- W4223947398 cites W2940600945 @default.
- W4223947398 cites W2963214893 @default.
- W4223947398 cites W2963765797 @default.
- W4223947398 cites W2963767194 @default.
- W4223947398 cites W2963968539 @default.
- W4223947398 cites W2964024144 @default.
- W4223947398 cites W2967293034 @default.
- W4223947398 cites W2988416191 @default.
- W4223947398 cites W2998123743 @default.
- W4223947398 cites W3003426638 @default.
- W4223947398 cites W3003989916 @default.
- W4223947398 cites W3012808657 @default.
- W4223947398 cites W3034288158 @default.
- W4223947398 cites W3045110211 @default.
- W4223947398 cites W3080252065 @default.
- W4223947398 cites W3081189998 @default.
- W4223947398 cites W3104038788 @default.
- W4223947398 cites W3107547765 @default.
- W4223947398 cites W3118697270 @default.
- W4223947398 cites W3128996337 @default.
- W4223947398 cites W3141875739 @default.
- W4223947398 cites W3213025081 @default.
- W4223947398 cites W4226107806 @default.
- W4223947398 cites W4245690829 @default.
- W4223947398 cites W4288072853 @default.
- W4223947398 cites W4288079361 @default.
- W4223947398 doi "https://doi.org/10.1145/3524302" @default.
- W4223947398 hasPublicationYear "2023" @default.
- W4223947398 type Work @default.
- W4223947398 citedByCount "3" @default.
- W4223947398 countsByYear W42239473982022 @default.
- W4223947398 countsByYear W42239473982023 @default.
- W4223947398 crossrefType "journal-article" @default.
- W4223947398 hasAuthorship W4223947398A5032187620 @default.
- W4223947398 hasAuthorship W4223947398A5036270316 @default.
- W4223947398 hasAuthorship W4223947398A5038002204 @default.
- W4223947398 hasAuthorship W4223947398A5049681022 @default.
- W4223947398 hasAuthorship W4223947398A5052809293 @default.
- W4223947398 hasAuthorship W4223947398A5091745851 @default.
- W4223947398 hasBestOaLocation W42239473982 @default.
- W4223947398 hasConcept C118615104 @default.
- W4223947398 hasConcept C118930307 @default.
- W4223947398 hasConcept C119857082 @default.
- W4223947398 hasConcept C121332964 @default.
- W4223947398 hasConcept C127413603 @default.
- W4223947398 hasConcept C147176958 @default.
- W4223947398 hasConcept C154945302 @default.
- W4223947398 hasConcept C163258240 @default.
- W4223947398 hasConcept C166957645 @default.
- W4223947398 hasConcept C167966045 @default.
- W4223947398 hasConcept C184603391 @default.
- W4223947398 hasConcept C205649164 @default.
- W4223947398 hasConcept C2522767166 @default.
- W4223947398 hasConcept C2779343474 @default.
- W4223947398 hasConcept C2780992000 @default.
- W4223947398 hasConcept C33923547 @default.
- W4223947398 hasConcept C37736160 @default.
- W4223947398 hasConcept C39890363 @default.
- W4223947398 hasConcept C41008148 @default.
- W4223947398 hasConcept C4792198 @default.
- W4223947398 hasConcept C49545453 @default.
- W4223947398 hasConcept C62520636 @default.
- W4223947398 hasConcept C94124525 @default.
- W4223947398 hasConceptScore W4223947398C118615104 @default.
- W4223947398 hasConceptScore W4223947398C118930307 @default.
- W4223947398 hasConceptScore W4223947398C119857082 @default.