Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223977275> ?p ?o ?g. }
- W4223977275 endingPage "117" @default.
- W4223977275 startingPage "105" @default.
- W4223977275 abstract "Artificial neural network has been fully developed in recent years, but as the size of the network grows, the required computing power also grows rapidly. In order to take advantage of the parallel computing of quantum computing to solve the difficulties of large computation in neural network, quantum neural network was proposed. In this paper, based on the pulse coupled neural network (PCNN), quantum pulse coupled neural network (QPCNN) is proposed. In this model, the basic quantum logic gates are utilized to form quantum operation modules, such as quantum full adder, quantum multiplier, and quantum comparator. A quantum image convolution operation applicable to QPCNN is designed employing quantum full adders and neighborhood preparation module. And these modules are employed to complete the operations required for QPCNN. And based on QPCNN, an quantum image segmentation is designed. Meanwhile, the effectiveness of QPCNN is proved by simulation experiments, and the complexity analysis shows that QPCNN has exponential speedup compared with classical PCNN." @default.
- W4223977275 created "2022-04-19" @default.
- W4223977275 creator A5012457469 @default.
- W4223977275 creator A5040128094 @default.
- W4223977275 creator A5077295889 @default.
- W4223977275 date "2022-08-01" @default.
- W4223977275 modified "2023-09-24" @default.
- W4223977275 title "Quantum pulse coupled neural network" @default.
- W4223977275 cites W1590026044 @default.
- W4223977275 cites W165877823 @default.
- W4223977275 cites W1971083981 @default.
- W4223977275 cites W1976649093 @default.
- W4223977275 cites W1984051156 @default.
- W4223977275 cites W2000532519 @default.
- W4223977275 cites W2018322767 @default.
- W4223977275 cites W2028070629 @default.
- W4223977275 cites W2032843526 @default.
- W4223977275 cites W2037730376 @default.
- W4223977275 cites W2039520532 @default.
- W4223977275 cites W2044799191 @default.
- W4223977275 cites W2050507516 @default.
- W4223977275 cites W2051446825 @default.
- W4223977275 cites W2063467433 @default.
- W4223977275 cites W2080302041 @default.
- W4223977275 cites W2084652510 @default.
- W4223977275 cites W2092612101 @default.
- W4223977275 cites W2098900497 @default.
- W4223977275 cites W2128084896 @default.
- W4223977275 cites W2138661420 @default.
- W4223977275 cites W2149959126 @default.
- W4223977275 cites W2150729352 @default.
- W4223977275 cites W2151767444 @default.
- W4223977275 cites W2165640958 @default.
- W4223977275 cites W2168676717 @default.
- W4223977275 cites W2179731956 @default.
- W4223977275 cites W2223089072 @default.
- W4223977275 cites W2268223243 @default.
- W4223977275 cites W2333392243 @default.
- W4223977275 cites W2551875526 @default.
- W4223977275 cites W2610222845 @default.
- W4223977275 cites W2745980017 @default.
- W4223977275 cites W2766955302 @default.
- W4223977275 cites W2772714698 @default.
- W4223977275 cites W2773213923 @default.
- W4223977275 cites W2784495539 @default.
- W4223977275 cites W2801908214 @default.
- W4223977275 cites W2891027816 @default.
- W4223977275 cites W2892079374 @default.
- W4223977275 cites W2910749883 @default.
- W4223977275 cites W2929047015 @default.
- W4223977275 cites W2941956715 @default.
- W4223977275 cites W2954464033 @default.
- W4223977275 cites W2960546610 @default.
- W4223977275 cites W3005134484 @default.
- W4223977275 cites W3007673423 @default.
- W4223977275 cites W3024215614 @default.
- W4223977275 cites W3025779941 @default.
- W4223977275 cites W3037607219 @default.
- W4223977275 cites W3039072419 @default.
- W4223977275 cites W3041784969 @default.
- W4223977275 cites W3041861383 @default.
- W4223977275 cites W3085923858 @default.
- W4223977275 cites W3109491312 @default.
- W4223977275 cites W3160680215 @default.
- W4223977275 cites W943028350 @default.
- W4223977275 doi "https://doi.org/10.1016/j.neunet.2022.04.007" @default.
- W4223977275 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35523083" @default.
- W4223977275 hasPublicationYear "2022" @default.
- W4223977275 type Work @default.
- W4223977275 citedByCount "0" @default.
- W4223977275 crossrefType "journal-article" @default.
- W4223977275 hasAuthorship W4223977275A5012457469 @default.
- W4223977275 hasAuthorship W4223977275A5040128094 @default.
- W4223977275 hasAuthorship W4223977275A5077295889 @default.
- W4223977275 hasConcept C11413529 @default.
- W4223977275 hasConcept C114614502 @default.
- W4223977275 hasConcept C121332964 @default.
- W4223977275 hasConcept C124584101 @default.
- W4223977275 hasConcept C137019171 @default.
- W4223977275 hasConcept C139719470 @default.
- W4223977275 hasConcept C154945302 @default.
- W4223977275 hasConcept C162324750 @default.
- W4223977275 hasConcept C173608175 @default.
- W4223977275 hasConcept C184720557 @default.
- W4223977275 hasConcept C186468114 @default.
- W4223977275 hasConcept C192122513 @default.
- W4223977275 hasConcept C33923547 @default.
- W4223977275 hasConcept C41008148 @default.
- W4223977275 hasConcept C50644808 @default.
- W4223977275 hasConcept C58053490 @default.
- W4223977275 hasConcept C58849907 @default.
- W4223977275 hasConcept C62520636 @default.
- W4223977275 hasConcept C68339613 @default.
- W4223977275 hasConcept C84114770 @default.
- W4223977275 hasConceptScore W4223977275C11413529 @default.
- W4223977275 hasConceptScore W4223977275C114614502 @default.
- W4223977275 hasConceptScore W4223977275C121332964 @default.
- W4223977275 hasConceptScore W4223977275C124584101 @default.