Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223977643> ?p ?o ?g. }
- W4223977643 abstract "The potential for stacking ensemble modeling to enhance the performance and generalizability of machine learning (ML) models for the estimation of total suspended solids (TSS) concentration was assessed by comparing the results with ensemble boosting, bagging, and single ML models. Seven stacking ensemble models (M1 to M7) were created using combinations of basic learners, including single, bagging, and boosting models. Adaptive Boosting (AdB) was used as an aggregation method in M1 to M6. The six models showed coefficient of determination (R2) values ranging from 0.87 to 0.95, root mean square error (RMSE) values ranging from 50 to 90 mg/L, and mean absolute error (MAE) values ranging from 11 to 86 mg/L where the best R2, RMSE, and MAE values were 0.95, 50 mg/L, and 12 mg/L, respectively. To further improve the predictions, we tested aggregation methods, including AdB, Random Forest (RF), Variable Weighting kNN (VW-kNN), Regression Tree (RT), and Support Vector Regression (SVR) using the structure of the highest-performing M6 model. This led to a new best fit model (M7) with RF as an aggregation method with R2, RMSE, and MAE values of 0.98, 32 mg/L, and 11 mg/L, respectively." @default.
- W4223977643 created "2022-04-19" @default.
- W4223977643 creator A5012814903 @default.
- W4223977643 creator A5016902340 @default.
- W4223977643 creator A5052851647 @default.
- W4223977643 date "2022-06-01" @default.
- W4223977643 modified "2023-10-16" @default.
- W4223977643 title "Supervised Stacking Ensemble Machine Learning Approach for Enhancing Prediction of Total Suspended Solids Concentration in Urban Watersheds" @default.
- W4223977643 cites W1525410796 @default.
- W4223977643 cites W1758094804 @default.
- W4223977643 cites W18678914 @default.
- W4223977643 cites W1967211424 @default.
- W4223977643 cites W2008004206 @default.
- W4223977643 cites W2010377115 @default.
- W4223977643 cites W2017978747 @default.
- W4223977643 cites W2029748544 @default.
- W4223977643 cites W2039240409 @default.
- W4223977643 cites W2039645777 @default.
- W4223977643 cites W2043449394 @default.
- W4223977643 cites W2077011856 @default.
- W4223977643 cites W2095795470 @default.
- W4223977643 cites W2128819463 @default.
- W4223977643 cites W2147061885 @default.
- W4223977643 cites W2161480961 @default.
- W4223977643 cites W2163983382 @default.
- W4223977643 cites W2165888424 @default.
- W4223977643 cites W2340543616 @default.
- W4223977643 cites W2474352670 @default.
- W4223977643 cites W2516616538 @default.
- W4223977643 cites W2587457795 @default.
- W4223977643 cites W2610156643 @default.
- W4223977643 cites W2737195924 @default.
- W4223977643 cites W2758210752 @default.
- W4223977643 cites W2808814577 @default.
- W4223977643 cites W2809563660 @default.
- W4223977643 cites W2885340027 @default.
- W4223977643 cites W2895303784 @default.
- W4223977643 cites W2897153573 @default.
- W4223977643 cites W2911964244 @default.
- W4223977643 cites W2914755028 @default.
- W4223977643 cites W2947044383 @default.
- W4223977643 cites W2950787058 @default.
- W4223977643 cites W2964035035 @default.
- W4223977643 cites W2970835038 @default.
- W4223977643 cites W2975524554 @default.
- W4223977643 cites W2980820439 @default.
- W4223977643 cites W2992322397 @default.
- W4223977643 cites W3000341686 @default.
- W4223977643 cites W3005657599 @default.
- W4223977643 cites W3021324573 @default.
- W4223977643 cites W3036562957 @default.
- W4223977643 cites W3042282673 @default.
- W4223977643 cites W3044123268 @default.
- W4223977643 cites W3093246649 @default.
- W4223977643 cites W3120304564 @default.
- W4223977643 cites W4212883601 @default.
- W4223977643 cites W4240310768 @default.
- W4223977643 cites W4241005218 @default.
- W4223977643 doi "https://doi.org/10.1061/(asce)ee.1943-7870.0001998" @default.
- W4223977643 hasPublicationYear "2022" @default.
- W4223977643 type Work @default.
- W4223977643 citedByCount "1" @default.
- W4223977643 countsByYear W42239776432022 @default.
- W4223977643 crossrefType "journal-article" @default.
- W4223977643 hasAuthorship W4223977643A5012814903 @default.
- W4223977643 hasAuthorship W4223977643A5016902340 @default.
- W4223977643 hasAuthorship W4223977643A5052851647 @default.
- W4223977643 hasConcept C105795698 @default.
- W4223977643 hasConcept C115051666 @default.
- W4223977643 hasConcept C119857082 @default.
- W4223977643 hasConcept C119898033 @default.
- W4223977643 hasConcept C12267149 @default.
- W4223977643 hasConcept C128990827 @default.
- W4223977643 hasConcept C139945424 @default.
- W4223977643 hasConcept C154945302 @default.
- W4223977643 hasConcept C169258074 @default.
- W4223977643 hasConcept C188287460 @default.
- W4223977643 hasConcept C27158222 @default.
- W4223977643 hasConcept C33923547 @default.
- W4223977643 hasConcept C39432304 @default.
- W4223977643 hasConcept C41008148 @default.
- W4223977643 hasConcept C45942800 @default.
- W4223977643 hasConcept C46686674 @default.
- W4223977643 hasConcept C4891672 @default.
- W4223977643 hasConcept C48921125 @default.
- W4223977643 hasConcept C70153297 @default.
- W4223977643 hasConcept C76155785 @default.
- W4223977643 hasConcept C87717796 @default.
- W4223977643 hasConcept C94061648 @default.
- W4223977643 hasConceptScore W4223977643C105795698 @default.
- W4223977643 hasConceptScore W4223977643C115051666 @default.
- W4223977643 hasConceptScore W4223977643C119857082 @default.
- W4223977643 hasConceptScore W4223977643C119898033 @default.
- W4223977643 hasConceptScore W4223977643C12267149 @default.
- W4223977643 hasConceptScore W4223977643C128990827 @default.
- W4223977643 hasConceptScore W4223977643C139945424 @default.
- W4223977643 hasConceptScore W4223977643C154945302 @default.
- W4223977643 hasConceptScore W4223977643C169258074 @default.
- W4223977643 hasConceptScore W4223977643C188287460 @default.
- W4223977643 hasConceptScore W4223977643C27158222 @default.