Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223979767> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4223979767 abstract "Permission managers in mobile devices allow users to control permissions requests, by granting of denying application's access to data and sensors. However, existing managers are ineffective at both protecting and warning users of the privacy risks of their permissions' decisions. Recent research proposes privacy protection mechanisms through user profiles to automate privacy decisions, taking personal privacy preferences into consideration. While promising, these proposals usually resort to a centralized server towards training the automation model, thus requiring users to trust this central entity. In this paper we propose a methodology to build privacy profiles and train neural networks for prediction of privacy decisions, while guaranteeing user privacy, even against a centralized server. Specifically, we resort to privacy-preserving clustering techniques towards building the privacy profiles, that is, the server computes the centroids (profiles) without access to the underlying data. Then, using federated learning, the model to predict permission decisions is learnt in a distributed fashion while all data remains locally in the users' devices. Experiments following our methodology show the feasibility of building a personalized and automated permission manager guaranteeing user privacy, while also reaching a performance comparable to the centralized state of the art, with an F1-score of 0.9." @default.
- W4223979767 created "2022-04-19" @default.
- W4223979767 creator A5072123869 @default.
- W4223979767 creator A5072828735 @default.
- W4223979767 creator A5074435675 @default.
- W4223979767 date "2022-04-14" @default.
- W4223979767 modified "2023-10-17" @default.
- W4223979767 title "Prediction of Mobile App Privacy Preferences with User Profiles via Federated Learning" @default.
- W4223979767 cites W1528743940 @default.
- W4223979767 cites W1585521625 @default.
- W4223979767 cites W1971541070 @default.
- W4223979767 cites W1991246983 @default.
- W4223979767 cites W1991750733 @default.
- W4223979767 cites W2004429690 @default.
- W4223979767 cites W2033811191 @default.
- W4223979767 cites W2057769763 @default.
- W4223979767 cites W2088193720 @default.
- W4223979767 cites W2092712591 @default.
- W4223979767 cites W2093367651 @default.
- W4223979767 cites W2579288588 @default.
- W4223979767 cites W2604458809 @default.
- W4223979767 cites W2786785900 @default.
- W4223979767 cites W2807367885 @default.
- W4223979767 cites W2979512459 @default.
- W4223979767 cites W2997591727 @default.
- W4223979767 doi "https://doi.org/10.1145/3508398.3511526" @default.
- W4223979767 hasPublicationYear "2022" @default.
- W4223979767 type Work @default.
- W4223979767 citedByCount "3" @default.
- W4223979767 countsByYear W42239797672022 @default.
- W4223979767 countsByYear W42239797672023 @default.
- W4223979767 crossrefType "proceedings-article" @default.
- W4223979767 hasAuthorship W4223979767A5072123869 @default.
- W4223979767 hasAuthorship W4223979767A5072828735 @default.
- W4223979767 hasAuthorship W4223979767A5074435675 @default.
- W4223979767 hasConcept C102938260 @default.
- W4223979767 hasConcept C108827166 @default.
- W4223979767 hasConcept C123201435 @default.
- W4223979767 hasConcept C136764020 @default.
- W4223979767 hasConcept C154945302 @default.
- W4223979767 hasConcept C17744445 @default.
- W4223979767 hasConcept C186967261 @default.
- W4223979767 hasConcept C193934123 @default.
- W4223979767 hasConcept C199539241 @default.
- W4223979767 hasConcept C2779089604 @default.
- W4223979767 hasConcept C38652104 @default.
- W4223979767 hasConcept C41008148 @default.
- W4223979767 hasConcept C509729295 @default.
- W4223979767 hasConcept C527821871 @default.
- W4223979767 hasConcept C73555534 @default.
- W4223979767 hasConcept C93996380 @default.
- W4223979767 hasConceptScore W4223979767C102938260 @default.
- W4223979767 hasConceptScore W4223979767C108827166 @default.
- W4223979767 hasConceptScore W4223979767C123201435 @default.
- W4223979767 hasConceptScore W4223979767C136764020 @default.
- W4223979767 hasConceptScore W4223979767C154945302 @default.
- W4223979767 hasConceptScore W4223979767C17744445 @default.
- W4223979767 hasConceptScore W4223979767C186967261 @default.
- W4223979767 hasConceptScore W4223979767C193934123 @default.
- W4223979767 hasConceptScore W4223979767C199539241 @default.
- W4223979767 hasConceptScore W4223979767C2779089604 @default.
- W4223979767 hasConceptScore W4223979767C38652104 @default.
- W4223979767 hasConceptScore W4223979767C41008148 @default.
- W4223979767 hasConceptScore W4223979767C509729295 @default.
- W4223979767 hasConceptScore W4223979767C527821871 @default.
- W4223979767 hasConceptScore W4223979767C73555534 @default.
- W4223979767 hasConceptScore W4223979767C93996380 @default.
- W4223979767 hasFunder F4320330264 @default.
- W4223979767 hasLocation W42239797671 @default.
- W4223979767 hasOpenAccess W4223979767 @default.
- W4223979767 hasPrimaryLocation W42239797671 @default.
- W4223979767 hasRelatedWork W2044984579 @default.
- W4223979767 hasRelatedWork W2092697020 @default.
- W4223979767 hasRelatedWork W2116878667 @default.
- W4223979767 hasRelatedWork W2118333568 @default.
- W4223979767 hasRelatedWork W2132024542 @default.
- W4223979767 hasRelatedWork W2163661494 @default.
- W4223979767 hasRelatedWork W2549995367 @default.
- W4223979767 hasRelatedWork W2994243660 @default.
- W4223979767 hasRelatedWork W331205302 @default.
- W4223979767 hasRelatedWork W4210242455 @default.
- W4223979767 isParatext "false" @default.
- W4223979767 isRetracted "false" @default.
- W4223979767 workType "article" @default.