Matches in SemOpenAlex for { <https://semopenalex.org/work/W4223981036> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4223981036 abstract "Abstract Naturally occurring hydrocarbon resources have been powering the world since the second half of the nineteenth century with increasing proportionality in terms of the energy mix, allowing tremendous economic growth globally. However, another subsurface resource is estimated to hold several orders of magnitude more energy than all hydrocarbon resources. Geothermal energy is renewable, abundant, and has a small carbon footprint, but its current use is geographically sparse and represents only 1% of the global energy production. To scale it up economically to other regions and applications, several critical problems need to be solved. In a recent paper, the effects of several well parameters were studied on the thermal output, assuming steady-state temperature (or successions of steady-state temperature for a given period) in the near-well region. In this paper, the effects of the transient near-well temperature and heat inflow from the formation are studied. The hydrocarbon industry is evaluating the opportunity of producing geothermal energy from existing oil and gas wells, as electricity and/or low-temperature waste heat. This can potentially yield significant advantages over traditional geothermal wells, especially in terms of reduced capital expenditure. For instance, the performance of geothermal wells, both injectors and producers, is limited by formation damage issues, such as drilling fluid invasion, fines migration, plugging, and mineral scaling. The scale composition is dependent on the formation mineralogy, for producing wells, and on the injected water quality, for injecting wells. Addressing these issues over the entire well life may be expensive and difficult to predict. Depending on the assumed boundary conditions and other simplifying assumptions, numerical simulations of coupled well and reservoir heat and mass transport may help predict more accurately the thermal output and longer-term economics. In a previous study, a mathematical model was proposed for closed-loop wells (i.e., U-shaped wells, single pipes in wells, and concentric pipes in wells) to study the effect of several well parameters on the thermal output. The focus on that study was on repurposing existing hydrocarbon wells to geothermal wells. The time- and space-dependent temperature solutions for all well configurations were obtained for time- and space-dependent fluid and flow properties. The near-well temperature was considered as steady-state, at least for a given time frame. A sensitivity study was also performed, showing the effects of several well parameters on the temperature of the fluid flowing to surface. Sensitivity results were included for such parameters as fluid flow rate, well length, inner tubing and annulus diameters, geothermal temperature, and overall heat transfer coefficients. The learnings and outcome from that study can also be incorporated in terms of adding wellbore lift models in various reservoir models. In this study, the effect of the transient temperature in the near-well region is considered and a sensitivity study is performed. Coupled well and reservoir heat and flow modelling for geothermal systems is important for accurately evaluating their thermal output and economics. A previously developed thermal well model assuming steady-state temperature in the near-well region is extended to account for transient drawdown. Based on the recent interest in the scientific literature in this topic, this study evaluates the effects of the heat conduction in the near-well region and the heat transfer from the near-well region to the well for different well configurations and geometries." @default.
- W4223981036 created "2022-04-19" @default.
- W4223981036 creator A5053459058 @default.
- W4223981036 creator A5079423324 @default.
- W4223981036 date "2022-04-18" @default.
- W4223981036 modified "2023-09-23" @default.
- W4223981036 title "Coupled Well-Reservoir Heat Modelling for Closed-Loop Geothermal Wells - A Feasibility Study" @default.
- W4223981036 cites W1987334741 @default.
- W4223981036 cites W1999565064 @default.
- W4223981036 cites W2000344364 @default.
- W4223981036 cites W2005679802 @default.
- W4223981036 cites W2032544539 @default.
- W4223981036 cites W2055755988 @default.
- W4223981036 cites W2067679613 @default.
- W4223981036 cites W2078299021 @default.
- W4223981036 cites W2121636581 @default.
- W4223981036 cites W2147180869 @default.
- W4223981036 cites W2396116627 @default.
- W4223981036 cites W2612893194 @default.
- W4223981036 cites W2724452338 @default.
- W4223981036 cites W2755316856 @default.
- W4223981036 cites W2766504013 @default.
- W4223981036 cites W2770073195 @default.
- W4223981036 cites W2781378911 @default.
- W4223981036 cites W2791113125 @default.
- W4223981036 cites W2793609115 @default.
- W4223981036 cites W2802192460 @default.
- W4223981036 cites W2936511933 @default.
- W4223981036 cites W3008566438 @default.
- W4223981036 cites W3135799059 @default.
- W4223981036 cites W3211386688 @default.
- W4223981036 cites W4205397030 @default.
- W4223981036 doi "https://doi.org/10.2118/209437-ms" @default.
- W4223981036 hasPublicationYear "2022" @default.
- W4223981036 type Work @default.
- W4223981036 citedByCount "2" @default.
- W4223981036 countsByYear W42239810362022 @default.
- W4223981036 crossrefType "proceedings-article" @default.
- W4223981036 hasAuthorship W4223981036A5053459058 @default.
- W4223981036 hasAuthorship W4223981036A5079423324 @default.
- W4223981036 hasConcept C111766609 @default.
- W4223981036 hasConcept C119599485 @default.
- W4223981036 hasConcept C121332964 @default.
- W4223981036 hasConcept C127313418 @default.
- W4223981036 hasConcept C127413603 @default.
- W4223981036 hasConcept C163258240 @default.
- W4223981036 hasConcept C188573790 @default.
- W4223981036 hasConcept C39432304 @default.
- W4223981036 hasConcept C423512 @default.
- W4223981036 hasConcept C518406490 @default.
- W4223981036 hasConcept C53914812 @default.
- W4223981036 hasConcept C548081761 @default.
- W4223981036 hasConcept C62520636 @default.
- W4223981036 hasConcept C68189081 @default.
- W4223981036 hasConcept C78762247 @default.
- W4223981036 hasConcept C8058405 @default.
- W4223981036 hasConceptScore W4223981036C111766609 @default.
- W4223981036 hasConceptScore W4223981036C119599485 @default.
- W4223981036 hasConceptScore W4223981036C121332964 @default.
- W4223981036 hasConceptScore W4223981036C127313418 @default.
- W4223981036 hasConceptScore W4223981036C127413603 @default.
- W4223981036 hasConceptScore W4223981036C163258240 @default.
- W4223981036 hasConceptScore W4223981036C188573790 @default.
- W4223981036 hasConceptScore W4223981036C39432304 @default.
- W4223981036 hasConceptScore W4223981036C423512 @default.
- W4223981036 hasConceptScore W4223981036C518406490 @default.
- W4223981036 hasConceptScore W4223981036C53914812 @default.
- W4223981036 hasConceptScore W4223981036C548081761 @default.
- W4223981036 hasConceptScore W4223981036C62520636 @default.
- W4223981036 hasConceptScore W4223981036C68189081 @default.
- W4223981036 hasConceptScore W4223981036C78762247 @default.
- W4223981036 hasConceptScore W4223981036C8058405 @default.
- W4223981036 hasLocation W42239810361 @default.
- W4223981036 hasOpenAccess W4223981036 @default.
- W4223981036 hasPrimaryLocation W42239810361 @default.
- W4223981036 hasRelatedWork W2004773421 @default.
- W4223981036 hasRelatedWork W2010902671 @default.
- W4223981036 hasRelatedWork W2356855068 @default.
- W4223981036 hasRelatedWork W2694799514 @default.
- W4223981036 hasRelatedWork W2735217447 @default.
- W4223981036 hasRelatedWork W2808916009 @default.
- W4223981036 hasRelatedWork W3179319214 @default.
- W4223981036 hasRelatedWork W4224949889 @default.
- W4223981036 hasRelatedWork W4233875295 @default.
- W4223981036 hasRelatedWork W2104783751 @default.
- W4223981036 isParatext "false" @default.
- W4223981036 isRetracted "false" @default.
- W4223981036 workType "article" @default.