Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224004652> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4224004652 abstract "Abstract: Refining the quality of a noisy image is essential for many image applications. Various median filter variants have been introduced to suppress various noises, but they have their own limitations when detecting noise and restoring noise-free images. Denoising convolutional neural networks (DnCNNs), primarily developed for Gaussian noise removal, are influential nonlinear mapping models in image processing. After alterations in training data, they can be used to suppress other noise with outstanding results. This article suggests a frequency median filter method combined with deep learning for color images polluted by Salt and Pepper (SnP) noise. The analysis presented in this paper has primarily used a frequency median filter to suppress impulse noise wherein the restored value for the center pixel is evaluated by the frequency median rather than the traditional median. After which, the pretrained denoising convolutional neural network is hired to suppress the remaining noise and attain the output image finally. With a visual comparative study, simulation results on the taken test images show that the proposed method surpasses de-noising methods in terms of PSNR, SSIM, NMSE, Entropy, IEF, NCC, PCC and Running Time." @default.
- W4224004652 created "2022-04-19" @default.
- W4224004652 creator A5002725831 @default.
- W4224004652 creator A5059529431 @default.
- W4224004652 date "2023-07-01" @default.
- W4224004652 modified "2023-09-27" @default.
- W4224004652 title "Impulse Noise Suppression in Color Images Using Median Filter and Deep Learning" @default.
- W4224004652 cites W2014214892 @default.
- W4224004652 cites W2040664021 @default.
- W4224004652 cites W2071795438 @default.
- W4224004652 cites W2090356242 @default.
- W4224004652 cites W2118292451 @default.
- W4224004652 cites W2133665775 @default.
- W4224004652 cites W2142781271 @default.
- W4224004652 cites W2148358298 @default.
- W4224004652 cites W2171743875 @default.
- W4224004652 cites W2508457857 @default.
- W4224004652 cites W2786348733 @default.
- W4224004652 cites W2787051466 @default.
- W4224004652 cites W2883674475 @default.
- W4224004652 cites W2946032093 @default.
- W4224004652 cites W2947827328 @default.
- W4224004652 cites W2972190753 @default.
- W4224004652 cites W3023444211 @default.
- W4224004652 cites W3081862838 @default.
- W4224004652 cites W3104725225 @default.
- W4224004652 doi "https://doi.org/10.2174/2666255815666220414111006" @default.
- W4224004652 hasPublicationYear "2023" @default.
- W4224004652 type Work @default.
- W4224004652 citedByCount "0" @default.
- W4224004652 crossrefType "journal-article" @default.
- W4224004652 hasAuthorship W4224004652A5002725831 @default.
- W4224004652 hasAuthorship W4224004652A5059529431 @default.
- W4224004652 hasConcept C106131492 @default.
- W4224004652 hasConcept C113660513 @default.
- W4224004652 hasConcept C115961682 @default.
- W4224004652 hasConcept C127372701 @default.
- W4224004652 hasConcept C137685913 @default.
- W4224004652 hasConcept C153180895 @default.
- W4224004652 hasConcept C154945302 @default.
- W4224004652 hasConcept C160633673 @default.
- W4224004652 hasConcept C163294075 @default.
- W4224004652 hasConcept C22597639 @default.
- W4224004652 hasConcept C31972630 @default.
- W4224004652 hasConcept C35772409 @default.
- W4224004652 hasConcept C41008148 @default.
- W4224004652 hasConcept C4199805 @default.
- W4224004652 hasConcept C55352655 @default.
- W4224004652 hasConcept C9417928 @default.
- W4224004652 hasConcept C99498987 @default.
- W4224004652 hasConceptScore W4224004652C106131492 @default.
- W4224004652 hasConceptScore W4224004652C113660513 @default.
- W4224004652 hasConceptScore W4224004652C115961682 @default.
- W4224004652 hasConceptScore W4224004652C127372701 @default.
- W4224004652 hasConceptScore W4224004652C137685913 @default.
- W4224004652 hasConceptScore W4224004652C153180895 @default.
- W4224004652 hasConceptScore W4224004652C154945302 @default.
- W4224004652 hasConceptScore W4224004652C160633673 @default.
- W4224004652 hasConceptScore W4224004652C163294075 @default.
- W4224004652 hasConceptScore W4224004652C22597639 @default.
- W4224004652 hasConceptScore W4224004652C31972630 @default.
- W4224004652 hasConceptScore W4224004652C35772409 @default.
- W4224004652 hasConceptScore W4224004652C41008148 @default.
- W4224004652 hasConceptScore W4224004652C4199805 @default.
- W4224004652 hasConceptScore W4224004652C55352655 @default.
- W4224004652 hasConceptScore W4224004652C9417928 @default.
- W4224004652 hasConceptScore W4224004652C99498987 @default.
- W4224004652 hasIssue "6" @default.
- W4224004652 hasLocation W42240046521 @default.
- W4224004652 hasOpenAccess W4224004652 @default.
- W4224004652 hasPrimaryLocation W42240046521 @default.
- W4224004652 hasRelatedWork W182969596 @default.
- W4224004652 hasRelatedWork W1996513329 @default.
- W4224004652 hasRelatedWork W2286538174 @default.
- W4224004652 hasRelatedWork W2381388953 @default.
- W4224004652 hasRelatedWork W2741461063 @default.
- W4224004652 hasRelatedWork W2766690586 @default.
- W4224004652 hasRelatedWork W2811019791 @default.
- W4224004652 hasRelatedWork W3175980410 @default.
- W4224004652 hasRelatedWork W4214680952 @default.
- W4224004652 hasRelatedWork W4383560172 @default.
- W4224004652 hasVolume "16" @default.
- W4224004652 isParatext "false" @default.
- W4224004652 isRetracted "false" @default.
- W4224004652 workType "article" @default.