Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224014600> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4224014600 endingPage "120" @default.
- W4224014600 startingPage "116" @default.
- W4224014600 abstract "This paper studies the application of deep convolutional neural networks for the processing of audio files, particularly for classifying amplitude-frequency characteristics of audio signals. The mapping of audio fragments to each other is reduced to verifying objects by their representation. A large representative sample of audio signals was collected and supplemented with a satisfying Free Music Archive dataset to produce a dataset for training a deep convolutional neural network. The CQT-Net architecture is taken as a predictive model with cosine similarity being used to compare feature vectors. Four types of augmentation, including Gaussian noise, reverberation, change in pitch frequency, and change in tempo of the audio signal, are used to prevent retraining of the predictive model. The verification quality of the predictive model is tested on two separate datasets consisting of 1500 audio recordings excluded from the training dataset. Detection error tradeoff curves are plotted for all datasets, including testing ones with a changed pace and with a changed pitch. Equal Error Rate is used as a model quality metric. The probability of identification of commonly used distortions of audio signals in the amplitude-frequency domain is evaluated to be higher than 92%. It signifies the reliability of the developed model." @default.
- W4224014600 created "2022-04-19" @default.
- W4224014600 creator A5006324649 @default.
- W4224014600 creator A5028505854 @default.
- W4224014600 creator A5034909986 @default.
- W4224014600 creator A5076377360 @default.
- W4224014600 date "2022-03-18" @default.
- W4224014600 modified "2023-09-25" @default.
- W4224014600 title "Development of Convolutional Neural Network for Classification of Amplitude-Frequency Characteristics of Audio Signals" @default.
- W4224014600 cites W2121750345 @default.
- W4224014600 cites W2191779130 @default.
- W4224014600 cites W2962866891 @default.
- W4224014600 doi "https://doi.org/10.14258/izvasu(2022)1-19" @default.
- W4224014600 hasPublicationYear "2022" @default.
- W4224014600 type Work @default.
- W4224014600 citedByCount "0" @default.
- W4224014600 crossrefType "journal-article" @default.
- W4224014600 hasAuthorship W4224014600A5006324649 @default.
- W4224014600 hasAuthorship W4224014600A5028505854 @default.
- W4224014600 hasAuthorship W4224014600A5034909986 @default.
- W4224014600 hasAuthorship W4224014600A5076377360 @default.
- W4224014600 hasBestOaLocation W42240146001 @default.
- W4224014600 hasConcept C121332964 @default.
- W4224014600 hasConcept C127220857 @default.
- W4224014600 hasConcept C13895895 @default.
- W4224014600 hasConcept C153180895 @default.
- W4224014600 hasConcept C154945302 @default.
- W4224014600 hasConcept C162324750 @default.
- W4224014600 hasConcept C163258240 @default.
- W4224014600 hasConcept C167310288 @default.
- W4224014600 hasConcept C176217482 @default.
- W4224014600 hasConcept C199360897 @default.
- W4224014600 hasConcept C21547014 @default.
- W4224014600 hasConcept C2779843651 @default.
- W4224014600 hasConcept C28490314 @default.
- W4224014600 hasConcept C41008148 @default.
- W4224014600 hasConcept C43214815 @default.
- W4224014600 hasConcept C50644808 @default.
- W4224014600 hasConcept C62520636 @default.
- W4224014600 hasConcept C64922751 @default.
- W4224014600 hasConcept C81363708 @default.
- W4224014600 hasConceptScore W4224014600C121332964 @default.
- W4224014600 hasConceptScore W4224014600C127220857 @default.
- W4224014600 hasConceptScore W4224014600C13895895 @default.
- W4224014600 hasConceptScore W4224014600C153180895 @default.
- W4224014600 hasConceptScore W4224014600C154945302 @default.
- W4224014600 hasConceptScore W4224014600C162324750 @default.
- W4224014600 hasConceptScore W4224014600C163258240 @default.
- W4224014600 hasConceptScore W4224014600C167310288 @default.
- W4224014600 hasConceptScore W4224014600C176217482 @default.
- W4224014600 hasConceptScore W4224014600C199360897 @default.
- W4224014600 hasConceptScore W4224014600C21547014 @default.
- W4224014600 hasConceptScore W4224014600C2779843651 @default.
- W4224014600 hasConceptScore W4224014600C28490314 @default.
- W4224014600 hasConceptScore W4224014600C41008148 @default.
- W4224014600 hasConceptScore W4224014600C43214815 @default.
- W4224014600 hasConceptScore W4224014600C50644808 @default.
- W4224014600 hasConceptScore W4224014600C62520636 @default.
- W4224014600 hasConceptScore W4224014600C64922751 @default.
- W4224014600 hasConceptScore W4224014600C81363708 @default.
- W4224014600 hasIssue "1(123)" @default.
- W4224014600 hasLocation W42240146001 @default.
- W4224014600 hasOpenAccess W4224014600 @default.
- W4224014600 hasPrimaryLocation W42240146001 @default.
- W4224014600 hasRelatedWork W1590604789 @default.
- W4224014600 hasRelatedWork W1964925579 @default.
- W4224014600 hasRelatedWork W2030887827 @default.
- W4224014600 hasRelatedWork W2145621424 @default.
- W4224014600 hasRelatedWork W2149396112 @default.
- W4224014600 hasRelatedWork W2170815394 @default.
- W4224014600 hasRelatedWork W2767651786 @default.
- W4224014600 hasRelatedWork W2792033502 @default.
- W4224014600 hasRelatedWork W2912288872 @default.
- W4224014600 hasRelatedWork W564581980 @default.
- W4224014600 isParatext "false" @default.
- W4224014600 isRetracted "false" @default.
- W4224014600 workType "article" @default.