Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224054322> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4224054322 abstract "An immersed boundary-lattice Boltzmann method is employed to simulate a squirmer (a classical self-propelled model) array swimming in a Newtonian fluid. The swimming Reynolds number Res is set in the range 0.05 ≤ Res ≤ 5 to study three typical arrays (i.e., the two-squirmer, triangular-squirmer, and quadrilateral-squirmer arrays) in their swimming speed, their power expenditure (P), and their hydrodynamic efficiency (η). Our results show that the two-pusher array with a smaller ds (the distance between the squirmers) yields a slower speed in contrast to the two-puller array, where a smaller ds yields a faster speed at Res ≥ 1 (“pusher” is propelled from the rear and “puller” from the front). The regular triangular-pusher (triangular-puller) array with θ = −60° (the included angle between the squirmers) swims faster (slower) than that with θ = 60°; the quadrilateral-pusher (quadrilateral-puller) array with model 2 swims faster (slower) than model 1 (the models are to be defined later). It is also found that a two-puller array with a larger ds is more likely to become unstable than that with a smaller ds. The triangular-puller array with θ = 60° is more likely to become unstable than that with θ = 60°; the quadrilateral-puller array with model 1 becomes unstable easier than that with model 2. In addition, a larger ds generally results in a less energy expenditure. A faster squirmer array yields a higher η, except for two extraordinarily puller arrays. A quantitative relation for η with ReU > 1 is obtained approximately, in that the increasing ratio of η is proportional to an exponent of the motion Reynolds number ReU." @default.
- W4224054322 created "2022-04-19" @default.
- W4224054322 creator A5032541045 @default.
- W4224054322 creator A5040929731 @default.
- W4224054322 creator A5075033104 @default.
- W4224054322 date "2022-05-01" @default.
- W4224054322 modified "2023-10-18" @default.
- W4224054322 title "Swimming of an inertial squirmer array in a Newtonian fluid" @default.
- W4224054322 cites W1965471949 @default.
- W4224054322 cites W1967329004 @default.
- W4224054322 cites W2004922282 @default.
- W4224054322 cites W2032101074 @default.
- W4224054322 cites W2037606505 @default.
- W4224054322 cites W2058827261 @default.
- W4224054322 cites W2087534032 @default.
- W4224054322 cites W2095445759 @default.
- W4224054322 cites W2117242079 @default.
- W4224054322 cites W2130718173 @default.
- W4224054322 cites W2145478381 @default.
- W4224054322 cites W2145484965 @default.
- W4224054322 cites W2167782502 @default.
- W4224054322 cites W2244403600 @default.
- W4224054322 cites W2304845716 @default.
- W4224054322 cites W2345161806 @default.
- W4224054322 cites W2468966256 @default.
- W4224054322 cites W2547532263 @default.
- W4224054322 cites W2596507454 @default.
- W4224054322 cites W2763079421 @default.
- W4224054322 cites W2782538902 @default.
- W4224054322 cites W2885540893 @default.
- W4224054322 cites W2890099312 @default.
- W4224054322 cites W2898783965 @default.
- W4224054322 cites W2906868436 @default.
- W4224054322 cites W2913206053 @default.
- W4224054322 cites W2961976292 @default.
- W4224054322 cites W2962391095 @default.
- W4224054322 cites W2964337592 @default.
- W4224054322 cites W3037540848 @default.
- W4224054322 cites W3093300134 @default.
- W4224054322 cites W3163488987 @default.
- W4224054322 cites W3181459507 @default.
- W4224054322 cites W3182498709 @default.
- W4224054322 cites W3212684707 @default.
- W4224054322 cites W4200297321 @default.
- W4224054322 doi "https://doi.org/10.1063/5.0090898" @default.
- W4224054322 hasPublicationYear "2022" @default.
- W4224054322 type Work @default.
- W4224054322 citedByCount "0" @default.
- W4224054322 crossrefType "journal-article" @default.
- W4224054322 hasAuthorship W4224054322A5032541045 @default.
- W4224054322 hasAuthorship W4224054322A5040929731 @default.
- W4224054322 hasAuthorship W4224054322A5075033104 @default.
- W4224054322 hasConcept C120665830 @default.
- W4224054322 hasConcept C121332964 @default.
- W4224054322 hasConcept C135628077 @default.
- W4224054322 hasConcept C151756577 @default.
- W4224054322 hasConcept C182748727 @default.
- W4224054322 hasConcept C196558001 @default.
- W4224054322 hasConcept C57879066 @default.
- W4224054322 hasConcept C74650414 @default.
- W4224054322 hasConcept C97355855 @default.
- W4224054322 hasConceptScore W4224054322C120665830 @default.
- W4224054322 hasConceptScore W4224054322C121332964 @default.
- W4224054322 hasConceptScore W4224054322C135628077 @default.
- W4224054322 hasConceptScore W4224054322C151756577 @default.
- W4224054322 hasConceptScore W4224054322C182748727 @default.
- W4224054322 hasConceptScore W4224054322C196558001 @default.
- W4224054322 hasConceptScore W4224054322C57879066 @default.
- W4224054322 hasConceptScore W4224054322C74650414 @default.
- W4224054322 hasConceptScore W4224054322C97355855 @default.
- W4224054322 hasFunder F4320321001 @default.
- W4224054322 hasIssue "5" @default.
- W4224054322 hasLocation W42240543221 @default.
- W4224054322 hasOpenAccess W4224054322 @default.
- W4224054322 hasPrimaryLocation W42240543221 @default.
- W4224054322 hasRelatedWork W2009154752 @default.
- W4224054322 hasRelatedWork W2070980289 @default.
- W4224054322 hasRelatedWork W2103749632 @default.
- W4224054322 hasRelatedWork W2317774214 @default.
- W4224054322 hasRelatedWork W2378313465 @default.
- W4224054322 hasRelatedWork W3085118699 @default.
- W4224054322 hasRelatedWork W3141414545 @default.
- W4224054322 hasRelatedWork W37290958 @default.
- W4224054322 hasRelatedWork W4235833822 @default.
- W4224054322 hasRelatedWork W4282838586 @default.
- W4224054322 hasVolume "34" @default.
- W4224054322 isParatext "false" @default.
- W4224054322 isRetracted "false" @default.
- W4224054322 workType "article" @default.