Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224057079> ?p ?o ?g. }
- W4224057079 endingPage "991" @default.
- W4224057079 startingPage "991" @default.
- W4224057079 abstract "The presence of heavy calcification in the coronary artery always presents a challenge for coronary computed tomography angiography (CCTA) in assessing the degree of coronary stenosis due to blooming artifacts associated with calcified plaques. Our study purpose was to use an advanced artificial intelligence (enhanced super-resolution generative adversarial network [ESRGAN]) model to suppress the blooming artifact in CCTA and determine its effect on improving the diagnostic performance of CCTA in calcified plaques.A total of 184 calcified plaques from 50 patients who underwent both CCTA and invasive coronary angiography (ICA) were analysed with measurements of coronary lumen on the original CCTA, and three sets of ESRGAN-processed images including ESRGAN-high-resolution (ESRGAN-HR), ESRGAN-average and ESRGAN-median with ICA as the reference method for determining sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV).ESRGAN-processed images improved the specificity and PPV at all three coronary arteries (LAD-left anterior descending, LCx-left circumflex and RCA-right coronary artery) compared to original CCTA with ESRGAN-median resulting in the highest values being 41.0% (95% confidence interval [CI]: 30%, 52.7%) and 26.9% (95% CI: 22.9%, 31.4%) at LAD; 41.7% (95% CI: 22.1%, 63.4%) and 36.4% (95% CI: 28.9%, 44.5%) at LCx; 55% (95% CI: 38.5%, 70.7%) and 47.1% (95% CI: 38.7%, 55.6%) at RCA; while corresponding values for original CCTA were 21.8% (95% CI: 13.2%, 32.6%) and 22.8% (95% CI: 20.8%, 24.9%); 12.5% (95% CI: 2.6%, 32.4%) and 27.6% (95% CI: 24.7%, 30.7%); 17.5% (95% CI: 7.3%, 32.8%) and 32.7% (95% CI: 29.6%, 35.9%) at LAD, LCx and RCA, respectively. There was no significant effect on sensitivity and NPV between the original CCTA and ESRGAN-processed images at all three coronary arteries. The area under the receiver operating characteristic curve was the highest with ESRGAN-median images at the RCA level with values being 0.76 (95% CI: 0.64, 0.89), 0.81 (95% CI: 0.69, 0.93), 0.82 (95% CI: 0.71, 0.94) and 0.86 (95% CI: 0.76, 0.96) corresponding to original CCTA and ESRGAN-HR, average and median images, respectively.This feasibility study shows the potential value of ESRGAN-processed images in improving the diagnostic value of CCTA for patients with calcified plaques." @default.
- W4224057079 created "2022-04-19" @default.
- W4224057079 creator A5013087704 @default.
- W4224057079 creator A5055071069 @default.
- W4224057079 date "2022-04-14" @default.
- W4224057079 modified "2023-09-30" @default.
- W4224057079 title "Artificial Intelligence (Enhanced Super-Resolution Generative Adversarial Network) for Calcium Deblooming in Coronary Computed Tomography Angiography: A Feasibility Study" @default.
- W4224057079 cites W1902631620 @default.
- W4224057079 cites W1969788387 @default.
- W4224057079 cites W1979815375 @default.
- W4224057079 cites W1985099374 @default.
- W4224057079 cites W2014394778 @default.
- W4224057079 cites W2034027636 @default.
- W4224057079 cites W2062083816 @default.
- W4224057079 cites W2096017602 @default.
- W4224057079 cites W2145801034 @default.
- W4224057079 cites W2296255778 @default.
- W4224057079 cites W2298123184 @default.
- W4224057079 cites W2336549738 @default.
- W4224057079 cites W2536573838 @default.
- W4224057079 cites W2565103853 @default.
- W4224057079 cites W2617128058 @default.
- W4224057079 cites W2743269518 @default.
- W4224057079 cites W2769042349 @default.
- W4224057079 cites W2774842050 @default.
- W4224057079 cites W2805554393 @default.
- W4224057079 cites W2893055003 @default.
- W4224057079 cites W2896634706 @default.
- W4224057079 cites W2901903036 @default.
- W4224057079 cites W2919115771 @default.
- W4224057079 cites W2936378778 @default.
- W4224057079 cites W2937456081 @default.
- W4224057079 cites W2937717647 @default.
- W4224057079 cites W2962696187 @default.
- W4224057079 cites W2964207435 @default.
- W4224057079 cites W2999575735 @default.
- W4224057079 cites W3010961121 @default.
- W4224057079 cites W3035763898 @default.
- W4224057079 cites W3040058424 @default.
- W4224057079 cites W3041237302 @default.
- W4224057079 cites W3041806057 @default.
- W4224057079 cites W3047313582 @default.
- W4224057079 cites W3099029995 @default.
- W4224057079 cites W3111777727 @default.
- W4224057079 cites W3134862796 @default.
- W4224057079 cites W3154686965 @default.
- W4224057079 cites W3173259688 @default.
- W4224057079 cites W3201992381 @default.
- W4224057079 cites W3210405012 @default.
- W4224057079 cites W3213871890 @default.
- W4224057079 cites W4206247747 @default.
- W4224057079 cites W4213352797 @default.
- W4224057079 doi "https://doi.org/10.3390/diagnostics12040991" @default.
- W4224057079 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35454039" @default.
- W4224057079 hasPublicationYear "2022" @default.
- W4224057079 type Work @default.
- W4224057079 citedByCount "11" @default.
- W4224057079 countsByYear W42240570792022 @default.
- W4224057079 countsByYear W42240570792023 @default.
- W4224057079 crossrefType "journal-article" @default.
- W4224057079 hasAuthorship W4224057079A5013087704 @default.
- W4224057079 hasAuthorship W4224057079A5055071069 @default.
- W4224057079 hasBestOaLocation W42240570791 @default.
- W4224057079 hasConcept C126322002 @default.
- W4224057079 hasConcept C126838900 @default.
- W4224057079 hasConcept C164705383 @default.
- W4224057079 hasConcept C197321550 @default.
- W4224057079 hasConcept C2776820930 @default.
- W4224057079 hasConcept C2778088351 @default.
- W4224057079 hasConcept C2778742706 @default.
- W4224057079 hasConcept C2780007028 @default.
- W4224057079 hasConcept C2780309369 @default.
- W4224057079 hasConcept C2780643987 @default.
- W4224057079 hasConcept C2781347138 @default.
- W4224057079 hasConcept C3019004856 @default.
- W4224057079 hasConcept C44249647 @default.
- W4224057079 hasConcept C500558357 @default.
- W4224057079 hasConcept C71924100 @default.
- W4224057079 hasConceptScore W4224057079C126322002 @default.
- W4224057079 hasConceptScore W4224057079C126838900 @default.
- W4224057079 hasConceptScore W4224057079C164705383 @default.
- W4224057079 hasConceptScore W4224057079C197321550 @default.
- W4224057079 hasConceptScore W4224057079C2776820930 @default.
- W4224057079 hasConceptScore W4224057079C2778088351 @default.
- W4224057079 hasConceptScore W4224057079C2778742706 @default.
- W4224057079 hasConceptScore W4224057079C2780007028 @default.
- W4224057079 hasConceptScore W4224057079C2780309369 @default.
- W4224057079 hasConceptScore W4224057079C2780643987 @default.
- W4224057079 hasConceptScore W4224057079C2781347138 @default.
- W4224057079 hasConceptScore W4224057079C3019004856 @default.
- W4224057079 hasConceptScore W4224057079C44249647 @default.
- W4224057079 hasConceptScore W4224057079C500558357 @default.
- W4224057079 hasConceptScore W4224057079C71924100 @default.
- W4224057079 hasIssue "4" @default.
- W4224057079 hasLocation W42240570791 @default.
- W4224057079 hasLocation W42240570792 @default.
- W4224057079 hasLocation W42240570793 @default.
- W4224057079 hasLocation W42240570794 @default.