Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224069789> ?p ?o ?g. }
- W4224069789 abstract "Abstract Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (Deep Picker in Context), an open-source deep-learning framework for supervised structure segmentation and macromolecular complex localization in cellular cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles and cytosol. By comparing our method to state-of-the-art approaches on this dataset, we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study compositionally-distinct subpopulations of cellular ribosomes, with emphasis on their contextual association with mitochondria and the endoplasmic reticulum. Finally, by applying pre-trained networks to a HeLa cell dataset, we demonstrate that DeePiCt achieves high-quality predictions in unseen datasets from different biological species in a matter of minutes. The comprehensively annotated experimental data and pre-trained networks are provided for immediate exploitation by the community." @default.
- W4224069789 created "2022-04-19" @default.
- W4224069789 creator A5002203585 @default.
- W4224069789 creator A5012601118 @default.
- W4224069789 creator A5016951894 @default.
- W4224069789 creator A5019289935 @default.
- W4224069789 creator A5023230414 @default.
- W4224069789 creator A5029592821 @default.
- W4224069789 creator A5038898203 @default.
- W4224069789 creator A5038981828 @default.
- W4224069789 creator A5045317851 @default.
- W4224069789 creator A5060475986 @default.
- W4224069789 creator A5063817478 @default.
- W4224069789 creator A5078644903 @default.
- W4224069789 creator A5080078647 @default.
- W4224069789 date "2022-04-13" @default.
- W4224069789 modified "2023-10-15" @default.
- W4224069789 title "Convolutional networks for supervised mining of molecular patterns within cellular context" @default.
- W4224069789 cites W1503369481 @default.
- W4224069789 cites W1552632109 @default.
- W4224069789 cites W2015159529 @default.
- W4224069789 cites W2020435927 @default.
- W4224069789 cites W2033443315 @default.
- W4224069789 cites W2042455841 @default.
- W4224069789 cites W2043831708 @default.
- W4224069789 cites W2050974542 @default.
- W4224069789 cites W2052384637 @default.
- W4224069789 cites W2059729638 @default.
- W4224069789 cites W2060203555 @default.
- W4224069789 cites W2083462910 @default.
- W4224069789 cites W2087960949 @default.
- W4224069789 cites W2091060631 @default.
- W4224069789 cites W2100455255 @default.
- W4224069789 cites W2108675105 @default.
- W4224069789 cites W2109184486 @default.
- W4224069789 cites W2115251427 @default.
- W4224069789 cites W2123023546 @default.
- W4224069789 cites W2123207418 @default.
- W4224069789 cites W2126919547 @default.
- W4224069789 cites W2132629607 @default.
- W4224069789 cites W2142111672 @default.
- W4224069789 cites W2217359279 @default.
- W4224069789 cites W2279160895 @default.
- W4224069789 cites W2279402243 @default.
- W4224069789 cites W2293078015 @default.
- W4224069789 cites W2427061751 @default.
- W4224069789 cites W2475510374 @default.
- W4224069789 cites W2487704570 @default.
- W4224069789 cites W2495112539 @default.
- W4224069789 cites W2513935955 @default.
- W4224069789 cites W2525287802 @default.
- W4224069789 cites W2548947017 @default.
- W4224069789 cites W2580555377 @default.
- W4224069789 cites W2589383075 @default.
- W4224069789 cites W2606279714 @default.
- W4224069789 cites W2734356283 @default.
- W4224069789 cites W2739391656 @default.
- W4224069789 cites W2749556515 @default.
- W4224069789 cites W2751898404 @default.
- W4224069789 cites W2773278544 @default.
- W4224069789 cites W2787027993 @default.
- W4224069789 cites W2885495980 @default.
- W4224069789 cites W2899714098 @default.
- W4224069789 cites W2906559793 @default.
- W4224069789 cites W2919115771 @default.
- W4224069789 cites W2962914239 @default.
- W4224069789 cites W2977933365 @default.
- W4224069789 cites W2980002742 @default.
- W4224069789 cites W2984439825 @default.
- W4224069789 cites W2989453214 @default.
- W4224069789 cites W2996870716 @default.
- W4224069789 cites W2997491371 @default.
- W4224069789 cites W3002477404 @default.
- W4224069789 cites W3005476250 @default.
- W4224069789 cites W3005700815 @default.
- W4224069789 cites W3010193650 @default.
- W4224069789 cites W3011021838 @default.
- W4224069789 cites W3011024809 @default.
- W4224069789 cites W3017052371 @default.
- W4224069789 cites W3024513041 @default.
- W4224069789 cites W3036844321 @default.
- W4224069789 cites W3044597067 @default.
- W4224069789 cites W3046071829 @default.
- W4224069789 cites W3048909661 @default.
- W4224069789 cites W3081651558 @default.
- W4224069789 cites W3092934047 @default.
- W4224069789 cites W3104363583 @default.
- W4224069789 cites W3127722007 @default.
- W4224069789 cites W3129051717 @default.
- W4224069789 cites W3159029479 @default.
- W4224069789 cites W3162829093 @default.
- W4224069789 cites W3188704320 @default.
- W4224069789 cites W3198524702 @default.
- W4224069789 cites W3207554858 @default.
- W4224069789 cites W3209957073 @default.
- W4224069789 cites W3212208195 @default.
- W4224069789 cites W4200428016 @default.
- W4224069789 cites W4236361580 @default.
- W4224069789 doi "https://doi.org/10.1101/2022.04.12.488077" @default.
- W4224069789 hasPublicationYear "2022" @default.