Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224074927> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4224074927 endingPage "109092" @default.
- W4224074927 startingPage "109092" @default.
- W4224074927 abstract "Asbestos has been widely used in the economy due to the mineral's unique physical and chemical properties. At the beginning of the 21st century, research confirmed that asbestos is a carcinogen. In 1997, in Poland it was forbidden to produce and use products containing asbestos. Statistics on the import of asbestos to Poland were collected, but unfortunately, there are no statistics on the quantity of asbestos products in use. Over 90% of still used products containing asbestos are asbestos-cement tiles. Therefore, various methods of estimating the number of these roofs are being sought to eliminate them safely from the use by the end of 2032. Our previous study has used CNN to test asbestos cement roofs identification in one commune. The purpose of the study is to present the possibilities of using the new artificial neural network architecture enhanced by inception-net which was developed to identify asbestos cement roofs based on high-resolution aerial images. In addition to our previous study, another commune was added to the research area. This study was conducted in two communes in Poland: Chęciny and Baranów. The study used orthophotos with a spatial resolution of 25 cm. Information on asbestos cement roofs was obtained during fieldwork. A new architecture of convolutional neural network (CNN) with a feature extraction block based on inception-net was used, which was not tested in our previous study. The classification was performed with the use of aerial imagery in the RGB composition since the results obtained before were promising. In this research, four different classification scenarios were tested: (1) the new network architecture with an inception-net-based network was trained and validated on signatures obtained for the same commune as in our previously published results (Krówczyńska et al., 2020) [18]; (2) the new network was trained and validated on signatures obtained for another commune in Poland; (3) the new network architecture with an inception-net-based network was trained on a dataset that combined both image signatures from two communes, from which training and validation signatures were selected randomly; (4) the new network architecture testing image signatures derived from one commune in another which was not seen by CNN. Moreover, the high-resolution imagery in those two communes was taken under different conditions. The choice of final model selection was done on the basis of the validation dataset loss function value (lowest is the best). The overall accuracy of the classification of different scenarios tested ranges from 88.0% to 93.0%. The presented research results indicate that there is a possibility to map asbestos cement roofs with high accuracy using the high-resolution aerial imagery taken under different conditions and CNN with inception-net using image signatures from different areas. This method may be used for decision-making communities to estimate the amount of asbestos cement roofing still in use to issue policies that will enable to safely eliminate those carcinogenic building materials from the environment." @default.
- W4224074927 created "2022-04-19" @default.
- W4224074927 creator A5011835601 @default.
- W4224074927 creator A5058410150 @default.
- W4224074927 creator A5074345025 @default.
- W4224074927 date "2022-06-01" @default.
- W4224074927 modified "2023-09-30" @default.
- W4224074927 title "Asbestos roofing recognition by use of convolutional neural networks and high-resolution aerial imagery. Testing different scenarios" @default.
- W4224074927 cites W1492608523 @default.
- W4224074927 cites W1985371477 @default.
- W4224074927 cites W1985858733 @default.
- W4224074927 cites W2016178175 @default.
- W4224074927 cites W2041968401 @default.
- W4224074927 cites W2068143718 @default.
- W4224074927 cites W2109800813 @default.
- W4224074927 cites W2126109689 @default.
- W4224074927 cites W2134072388 @default.
- W4224074927 cites W2142869421 @default.
- W4224074927 cites W2170854037 @default.
- W4224074927 cites W2181451839 @default.
- W4224074927 cites W2328281370 @default.
- W4224074927 cites W2556563231 @default.
- W4224074927 cites W2567438483 @default.
- W4224074927 cites W2712450920 @default.
- W4224074927 cites W2884408514 @default.
- W4224074927 cites W2919115771 @default.
- W4224074927 cites W2920110320 @default.
- W4224074927 cites W2968855649 @default.
- W4224074927 cites W3004183582 @default.
- W4224074927 cites W3040525734 @default.
- W4224074927 cites W4211134618 @default.
- W4224074927 cites W4213084231 @default.
- W4224074927 doi "https://doi.org/10.1016/j.buildenv.2022.109092" @default.
- W4224074927 hasPublicationYear "2022" @default.
- W4224074927 type Work @default.
- W4224074927 citedByCount "5" @default.
- W4224074927 countsByYear W42240749272022 @default.
- W4224074927 countsByYear W42240749272023 @default.
- W4224074927 crossrefType "journal-article" @default.
- W4224074927 hasAuthorship W4224074927A5011835601 @default.
- W4224074927 hasAuthorship W4224074927A5058410150 @default.
- W4224074927 hasAuthorship W4224074927A5074345025 @default.
- W4224074927 hasBestOaLocation W42240749271 @default.
- W4224074927 hasConcept C123657996 @default.
- W4224074927 hasConcept C127413603 @default.
- W4224074927 hasConcept C154945302 @default.
- W4224074927 hasConcept C166957645 @default.
- W4224074927 hasConcept C191897082 @default.
- W4224074927 hasConcept C192562407 @default.
- W4224074927 hasConcept C205649164 @default.
- W4224074927 hasConcept C2776097590 @default.
- W4224074927 hasConcept C39432304 @default.
- W4224074927 hasConcept C41008148 @default.
- W4224074927 hasConcept C510490043 @default.
- W4224074927 hasConcept C523993062 @default.
- W4224074927 hasConcept C58640448 @default.
- W4224074927 hasConcept C81363708 @default.
- W4224074927 hasConcept C82789328 @default.
- W4224074927 hasConceptScore W4224074927C123657996 @default.
- W4224074927 hasConceptScore W4224074927C127413603 @default.
- W4224074927 hasConceptScore W4224074927C154945302 @default.
- W4224074927 hasConceptScore W4224074927C166957645 @default.
- W4224074927 hasConceptScore W4224074927C191897082 @default.
- W4224074927 hasConceptScore W4224074927C192562407 @default.
- W4224074927 hasConceptScore W4224074927C205649164 @default.
- W4224074927 hasConceptScore W4224074927C2776097590 @default.
- W4224074927 hasConceptScore W4224074927C39432304 @default.
- W4224074927 hasConceptScore W4224074927C41008148 @default.
- W4224074927 hasConceptScore W4224074927C510490043 @default.
- W4224074927 hasConceptScore W4224074927C523993062 @default.
- W4224074927 hasConceptScore W4224074927C58640448 @default.
- W4224074927 hasConceptScore W4224074927C81363708 @default.
- W4224074927 hasConceptScore W4224074927C82789328 @default.
- W4224074927 hasLocation W42240749271 @default.
- W4224074927 hasOpenAccess W4224074927 @default.
- W4224074927 hasPrimaryLocation W42240749271 @default.
- W4224074927 hasRelatedWork W2030674979 @default.
- W4224074927 hasRelatedWork W2046691869 @default.
- W4224074927 hasRelatedWork W2419628281 @default.
- W4224074927 hasRelatedWork W2433591809 @default.
- W4224074927 hasRelatedWork W2899084033 @default.
- W4224074927 hasRelatedWork W2950479845 @default.
- W4224074927 hasRelatedWork W2953143763 @default.
- W4224074927 hasRelatedWork W623024476 @default.
- W4224074927 hasRelatedWork W2028425854 @default.
- W4224074927 hasRelatedWork W3148689448 @default.
- W4224074927 hasVolume "217" @default.
- W4224074927 isParatext "false" @default.
- W4224074927 isRetracted "false" @default.
- W4224074927 workType "article" @default.