Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224098049> ?p ?o ?g. }
- W4224098049 endingPage "515" @default.
- W4224098049 startingPage "515" @default.
- W4224098049 abstract "Breathing sounds during sleep are an important characteristic feature of obstructive sleep apnea (OSA) and have been regarded as a potential biomarker. Breathing sounds during sleep can be easily recorded using a microphone, which is found in most smartphone devices. Therefore, it may be easy to implement an evaluation tool for prescreening purposes.To evaluate OSA prediction models using smartphone-recorded sounds and identify optimal settings with regard to noise processing and sound feature selection.A cross-sectional study was performed among patients who visited the sleep center of Seoul National University Bundang Hospital for snoring or sleep apnea from August 2015 to August 2019. Audio recordings during sleep were performed using a smartphone during routine, full-night, in-laboratory polysomnography. Using a random forest algorithm, binary classifications were separately conducted for 3 different threshold criteria according to an apnea hypopnea index (AHI) threshold of 5, 15, or 30 events/h. Four regression models were created according to noise reduction and feature selection from the input sound to predict actual AHI: (1) noise reduction without feature selection, (2) noise reduction with feature selection, (3) neither noise reduction nor feature selection, and (4) feature selection without noise reduction. Clinical and polysomnographic parameters that may have been associated with errors were assessed. Data were analyzed from September 2019 to September 2020.Accuracy of OSA prediction models.A total of 423 patients (mean [SD] age, 48.1 [12.8] years; 356 [84.1%] male) were analyzed. Data were split into training (n = 256 [60.5%]) and test data sets (n = 167 [39.5%]). Accuracies were 88.2%, 82.3%, and 81.7%, and the areas under curve were 0.90, 0.89, and 0.90 for an AHI threshold of 5, 15, and 30 events/h, respectively. In the regression analysis, using recorded sounds that had not been denoised and had only selected attributes resulted in the highest correlation coefficient (r = 0.78; 95% CI, 0.69-0.88). The AHI (β = 0.33; 95% CI, 0.24-0.42) and sleep efficiency (β = -0.20; 95% CI, -0.35 to -0.05) were found to be associated with estimation error.In this cross-sectional study, recorded sleep breathing sounds using a smartphone were used to create reasonably accurate OSA prediction models. Future research should focus on real-life recordings using various smartphone devices." @default.
- W4224098049 created "2022-04-19" @default.
- W4224098049 creator A5003093042 @default.
- W4224098049 creator A5011428158 @default.
- W4224098049 creator A5021338398 @default.
- W4224098049 creator A5025936404 @default.
- W4224098049 creator A5027151632 @default.
- W4224098049 creator A5086440682 @default.
- W4224098049 date "2022-06-01" @default.
- W4224098049 modified "2023-10-16" @default.
- W4224098049 title "Evaluating Prediction Models of Sleep Apnea From Smartphone-Recorded Sleep Breathing Sounds" @default.
- W4224098049 cites W1800815995 @default.
- W4224098049 cites W1982907441 @default.
- W4224098049 cites W2057354130 @default.
- W4224098049 cites W2092726926 @default.
- W4224098049 cites W2148143831 @default.
- W4224098049 cites W2264784497 @default.
- W4224098049 cites W2286275570 @default.
- W4224098049 cites W2414404397 @default.
- W4224098049 cites W2579968156 @default.
- W4224098049 cites W2583244548 @default.
- W4224098049 cites W2609711955 @default.
- W4224098049 cites W2612940703 @default.
- W4224098049 cites W2782890984 @default.
- W4224098049 cites W2787964244 @default.
- W4224098049 cites W2801576521 @default.
- W4224098049 cites W2805585262 @default.
- W4224098049 cites W2890527888 @default.
- W4224098049 cites W2892241366 @default.
- W4224098049 cites W2956445169 @default.
- W4224098049 cites W2959442417 @default.
- W4224098049 cites W2979440231 @default.
- W4224098049 cites W2999734060 @default.
- W4224098049 cites W3004548770 @default.
- W4224098049 cites W3042631228 @default.
- W4224098049 cites W3048664285 @default.
- W4224098049 cites W4246618885 @default.
- W4224098049 doi "https://doi.org/10.1001/jamaoto.2022.0244" @default.
- W4224098049 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35420648" @default.
- W4224098049 hasPublicationYear "2022" @default.
- W4224098049 type Work @default.
- W4224098049 citedByCount "6" @default.
- W4224098049 countsByYear W42240980492022 @default.
- W4224098049 countsByYear W42240980492023 @default.
- W4224098049 crossrefType "journal-article" @default.
- W4224098049 hasAuthorship W4224098049A5003093042 @default.
- W4224098049 hasAuthorship W4224098049A5011428158 @default.
- W4224098049 hasAuthorship W4224098049A5021338398 @default.
- W4224098049 hasAuthorship W4224098049A5025936404 @default.
- W4224098049 hasAuthorship W4224098049A5027151632 @default.
- W4224098049 hasAuthorship W4224098049A5086440682 @default.
- W4224098049 hasBestOaLocation W42240980492 @default.
- W4224098049 hasConcept C111919701 @default.
- W4224098049 hasConcept C115961682 @default.
- W4224098049 hasConcept C126322002 @default.
- W4224098049 hasConcept C138885662 @default.
- W4224098049 hasConcept C148483581 @default.
- W4224098049 hasConcept C154945302 @default.
- W4224098049 hasConcept C163294075 @default.
- W4224098049 hasConcept C2775841894 @default.
- W4224098049 hasConcept C2776006263 @default.
- W4224098049 hasConcept C2776401178 @default.
- W4224098049 hasConcept C2777935920 @default.
- W4224098049 hasConcept C2778205975 @default.
- W4224098049 hasConcept C2778263558 @default.
- W4224098049 hasConcept C2781326671 @default.
- W4224098049 hasConcept C28490314 @default.
- W4224098049 hasConcept C39300077 @default.
- W4224098049 hasConcept C41008148 @default.
- W4224098049 hasConcept C41895202 @default.
- W4224098049 hasConcept C42219234 @default.
- W4224098049 hasConcept C548259974 @default.
- W4224098049 hasConcept C68115822 @default.
- W4224098049 hasConcept C71924100 @default.
- W4224098049 hasConcept C76155785 @default.
- W4224098049 hasConcept C99498987 @default.
- W4224098049 hasConceptScore W4224098049C111919701 @default.
- W4224098049 hasConceptScore W4224098049C115961682 @default.
- W4224098049 hasConceptScore W4224098049C126322002 @default.
- W4224098049 hasConceptScore W4224098049C138885662 @default.
- W4224098049 hasConceptScore W4224098049C148483581 @default.
- W4224098049 hasConceptScore W4224098049C154945302 @default.
- W4224098049 hasConceptScore W4224098049C163294075 @default.
- W4224098049 hasConceptScore W4224098049C2775841894 @default.
- W4224098049 hasConceptScore W4224098049C2776006263 @default.
- W4224098049 hasConceptScore W4224098049C2776401178 @default.
- W4224098049 hasConceptScore W4224098049C2777935920 @default.
- W4224098049 hasConceptScore W4224098049C2778205975 @default.
- W4224098049 hasConceptScore W4224098049C2778263558 @default.
- W4224098049 hasConceptScore W4224098049C2781326671 @default.
- W4224098049 hasConceptScore W4224098049C28490314 @default.
- W4224098049 hasConceptScore W4224098049C39300077 @default.
- W4224098049 hasConceptScore W4224098049C41008148 @default.
- W4224098049 hasConceptScore W4224098049C41895202 @default.
- W4224098049 hasConceptScore W4224098049C42219234 @default.
- W4224098049 hasConceptScore W4224098049C548259974 @default.
- W4224098049 hasConceptScore W4224098049C68115822 @default.
- W4224098049 hasConceptScore W4224098049C71924100 @default.