Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224112146> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4224112146 abstract "The occurrence of road accidents continues to be one of the prominent causes of deaths, disabilities and hospitalisation in the country. This makes traffic accident risk prediction important in order to minimise it and save lives. Several kinds of models have been proposed to achieve the same ranging from old statistical models to the new models motivated by the advent of machine learning. This paper presents a comparative study of a variety of these models in an effort to analyse and deduce a beneficial approach to traffic accident risk prediction. Since the drivers are the ones in control on the road the study aims to provide traffic accident risk prediction to the drivers by analysing the factors they would know of beforehand like vehicle type, age sex, time of the day and weather etc. Optimal Classification Trees is a model that would provide such results that make intuitive sense to the driver along with the use of Random Forest and Logistic Regression. Furthermore, the geolocation data analysis using K-means clustering algorithm can provide information regarding places that are more prone to accidents. Through the analysis of previously known factors using these algorithms the drivers can be equipped with traffic accident risk predictions that would help them make informed decisions to minimise the same." @default.
- W4224112146 created "2022-04-19" @default.
- W4224112146 creator A5040810157 @default.
- W4224112146 creator A5082017036 @default.
- W4224112146 creator A5083788994 @default.
- W4224112146 creator A5086429801 @default.
- W4224112146 creator A5089325290 @default.
- W4224112146 creator A5090269878 @default.
- W4224112146 creator A5027035787 @default.
- W4224112146 date "2022-03-10" @default.
- W4224112146 modified "2023-09-25" @default.
- W4224112146 title "Traffic Accident Risk Prediction Using Machine Learning" @default.
- W4224112146 cites W1544982516 @default.
- W4224112146 cites W1989597542 @default.
- W4224112146 cites W2097513162 @default.
- W4224112146 cites W2271450618 @default.
- W4224112146 cites W2299239789 @default.
- W4224112146 cites W2342723138 @default.
- W4224112146 cites W2471643592 @default.
- W4224112146 cites W2785818537 @default.
- W4224112146 cites W2972015334 @default.
- W4224112146 cites W2973861572 @default.
- W4224112146 cites W2997643818 @default.
- W4224112146 cites W3008084702 @default.
- W4224112146 cites W3012426282 @default.
- W4224112146 cites W3014068278 @default.
- W4224112146 cites W3017783143 @default.
- W4224112146 cites W3039973105 @default.
- W4224112146 cites W3040198975 @default.
- W4224112146 cites W3041192002 @default.
- W4224112146 cites W3081626762 @default.
- W4224112146 cites W3100199031 @default.
- W4224112146 cites W3109352822 @default.
- W4224112146 cites W3116135537 @default.
- W4224112146 cites W3132782473 @default.
- W4224112146 cites W3183543548 @default.
- W4224112146 cites W1995339905 @default.
- W4224112146 cites W2780218595 @default.
- W4224112146 doi "https://doi.org/10.1109/mecon53876.2022.9752273" @default.
- W4224112146 hasPublicationYear "2022" @default.
- W4224112146 type Work @default.
- W4224112146 citedByCount "3" @default.
- W4224112146 countsByYear W42241121462022 @default.
- W4224112146 countsByYear W42241121462023 @default.
- W4224112146 crossrefType "proceedings-article" @default.
- W4224112146 hasAuthorship W4224112146A5027035787 @default.
- W4224112146 hasAuthorship W4224112146A5040810157 @default.
- W4224112146 hasAuthorship W4224112146A5082017036 @default.
- W4224112146 hasAuthorship W4224112146A5083788994 @default.
- W4224112146 hasAuthorship W4224112146A5086429801 @default.
- W4224112146 hasAuthorship W4224112146A5089325290 @default.
- W4224112146 hasAuthorship W4224112146A5090269878 @default.
- W4224112146 hasConcept C111472728 @default.
- W4224112146 hasConcept C119857082 @default.
- W4224112146 hasConcept C136197465 @default.
- W4224112146 hasConcept C136764020 @default.
- W4224112146 hasConcept C138885662 @default.
- W4224112146 hasConcept C151956035 @default.
- W4224112146 hasConcept C154945302 @default.
- W4224112146 hasConcept C169258074 @default.
- W4224112146 hasConcept C22041718 @default.
- W4224112146 hasConcept C2780289543 @default.
- W4224112146 hasConcept C41008148 @default.
- W4224112146 hasConcept C45804977 @default.
- W4224112146 hasConcept C73555534 @default.
- W4224112146 hasConceptScore W4224112146C111472728 @default.
- W4224112146 hasConceptScore W4224112146C119857082 @default.
- W4224112146 hasConceptScore W4224112146C136197465 @default.
- W4224112146 hasConceptScore W4224112146C136764020 @default.
- W4224112146 hasConceptScore W4224112146C138885662 @default.
- W4224112146 hasConceptScore W4224112146C151956035 @default.
- W4224112146 hasConceptScore W4224112146C154945302 @default.
- W4224112146 hasConceptScore W4224112146C169258074 @default.
- W4224112146 hasConceptScore W4224112146C22041718 @default.
- W4224112146 hasConceptScore W4224112146C2780289543 @default.
- W4224112146 hasConceptScore W4224112146C41008148 @default.
- W4224112146 hasConceptScore W4224112146C45804977 @default.
- W4224112146 hasConceptScore W4224112146C73555534 @default.
- W4224112146 hasLocation W42241121461 @default.
- W4224112146 hasOpenAccess W4224112146 @default.
- W4224112146 hasPrimaryLocation W42241121461 @default.
- W4224112146 hasRelatedWork W10015831 @default.
- W4224112146 hasRelatedWork W10600273 @default.
- W4224112146 hasRelatedWork W10697079 @default.
- W4224112146 hasRelatedWork W12634471 @default.
- W4224112146 hasRelatedWork W13692438 @default.
- W4224112146 hasRelatedWork W1472067 @default.
- W4224112146 hasRelatedWork W36490 @default.
- W4224112146 hasRelatedWork W6479499 @default.
- W4224112146 hasRelatedWork W7724241 @default.
- W4224112146 hasRelatedWork W7903576 @default.
- W4224112146 isParatext "false" @default.
- W4224112146 isRetracted "false" @default.
- W4224112146 workType "article" @default.