Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224130862> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4224130862 endingPage "33333" @default.
- W4224130862 startingPage "33311" @default.
- W4224130862 abstract "The main financial markets of every country are stock exchange and consider as an imperative cause for the corporations to increase capital. The novelty of this study to explore machine learning techniques when applied to financial stock market data, and to understand how machine learning algorithms can be applied and compare the result with time series analysis to real lifetime series data and helpful for any investor. Investors are constantly reviewing past pricing history and using it to influence their future investment decisions. The another novelty of this study, using news sentiments, the values will be processed into lists displaying and representing the stock and predicting the future rates to describe the market, and to compare investments, which will help to avoid uncertainty amongst the investors regarding the stock index. Using artificial neural network technique for prediction for KSE 100 index data on closing day. In this regard, six months’ data cycle trained the data and apply the statistical interference using a ARMA (p, q) model to calculate numerical result. The novelty of this study to find the relation between them either they are strongly correlated or not, using machine learning techniques and ARMA (p, q) process to forecast the behavior KSE 100 index cycles. The adequacy of model describes via least values Akaike information criterion (AIC), Bayesian Schwarz information criterion (SIC) and Hannan Quinn information criterion (HIC). Durbin- Watson (DW) test is also applied. DW values (< 2) shows that all cycles are strongly correlated. Most of the KSE-100 index cycles expresses that the appropriate model is ARMA (2,1). Cycle’s 2nd,3rd,4th and 5th shows that ARMA (3,1) is best fitted. Cycle 8th is shows ARMA (1,1) best fit and cycle 12th shows that the most appropriate model is ARMA (4,1). Diagnostic checking tests like Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Theil’s U-Statistics are used to predict KSE-100 index cycles. Theil’s U-Statistics demonstrate that each cycle is strongly correlated to previous one." @default.
- W4224130862 created "2022-04-20" @default.
- W4224130862 creator A5081677534 @default.
- W4224130862 creator A5087111773 @default.
- W4224130862 date "2022-04-18" @default.
- W4224130862 modified "2023-09-26" @default.
- W4224130862 title "Modeling and prediction of KSE – 100 index closing based on news sentiments: an applications of machine learning model and ARMA (p, q) model" @default.
- W4224130862 cites W2005570377 @default.
- W4224130862 cites W2135691157 @default.
- W4224130862 cites W2291683584 @default.
- W4224130862 cites W2484997644 @default.
- W4224130862 cites W2561559620 @default.
- W4224130862 cites W3030718946 @default.
- W4224130862 doi "https://doi.org/10.1007/s11042-022-13052-2" @default.
- W4224130862 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35463220" @default.
- W4224130862 hasPublicationYear "2022" @default.
- W4224130862 type Work @default.
- W4224130862 citedByCount "2" @default.
- W4224130862 countsByYear W42241308622023 @default.
- W4224130862 crossrefType "journal-article" @default.
- W4224130862 hasAuthorship W4224130862A5081677534 @default.
- W4224130862 hasAuthorship W4224130862A5087111773 @default.
- W4224130862 hasBestOaLocation W42241308621 @default.
- W4224130862 hasConcept C10138342 @default.
- W4224130862 hasConcept C11413529 @default.
- W4224130862 hasConcept C119857082 @default.
- W4224130862 hasConcept C126674687 @default.
- W4224130862 hasConcept C136764020 @default.
- W4224130862 hasConcept C138885662 @default.
- W4224130862 hasConcept C149782125 @default.
- W4224130862 hasConcept C151730666 @default.
- W4224130862 hasConcept C154945302 @default.
- W4224130862 hasConcept C162324750 @default.
- W4224130862 hasConcept C168136583 @default.
- W4224130862 hasConcept C19244329 @default.
- W4224130862 hasConcept C200870193 @default.
- W4224130862 hasConcept C27206212 @default.
- W4224130862 hasConcept C2777382242 @default.
- W4224130862 hasConcept C2778738651 @default.
- W4224130862 hasConcept C2780299701 @default.
- W4224130862 hasConcept C2780762169 @default.
- W4224130862 hasConcept C41008148 @default.
- W4224130862 hasConcept C86803240 @default.
- W4224130862 hasConcept C88389905 @default.
- W4224130862 hasConceptScore W4224130862C10138342 @default.
- W4224130862 hasConceptScore W4224130862C11413529 @default.
- W4224130862 hasConceptScore W4224130862C119857082 @default.
- W4224130862 hasConceptScore W4224130862C126674687 @default.
- W4224130862 hasConceptScore W4224130862C136764020 @default.
- W4224130862 hasConceptScore W4224130862C138885662 @default.
- W4224130862 hasConceptScore W4224130862C149782125 @default.
- W4224130862 hasConceptScore W4224130862C151730666 @default.
- W4224130862 hasConceptScore W4224130862C154945302 @default.
- W4224130862 hasConceptScore W4224130862C162324750 @default.
- W4224130862 hasConceptScore W4224130862C168136583 @default.
- W4224130862 hasConceptScore W4224130862C19244329 @default.
- W4224130862 hasConceptScore W4224130862C200870193 @default.
- W4224130862 hasConceptScore W4224130862C27206212 @default.
- W4224130862 hasConceptScore W4224130862C2777382242 @default.
- W4224130862 hasConceptScore W4224130862C2778738651 @default.
- W4224130862 hasConceptScore W4224130862C2780299701 @default.
- W4224130862 hasConceptScore W4224130862C2780762169 @default.
- W4224130862 hasConceptScore W4224130862C41008148 @default.
- W4224130862 hasConceptScore W4224130862C86803240 @default.
- W4224130862 hasConceptScore W4224130862C88389905 @default.
- W4224130862 hasIssue "23" @default.
- W4224130862 hasLocation W42241308621 @default.
- W4224130862 hasLocation W42241308622 @default.
- W4224130862 hasLocation W42241308623 @default.
- W4224130862 hasOpenAccess W4224130862 @default.
- W4224130862 hasPrimaryLocation W42241308621 @default.
- W4224130862 hasRelatedWork W1748971540 @default.
- W4224130862 hasRelatedWork W2004880515 @default.
- W4224130862 hasRelatedWork W2955890543 @default.
- W4224130862 hasRelatedWork W3020201552 @default.
- W4224130862 hasRelatedWork W3049129108 @default.
- W4224130862 hasRelatedWork W3119996120 @default.
- W4224130862 hasRelatedWork W3123364316 @default.
- W4224130862 hasRelatedWork W3125669757 @default.
- W4224130862 hasRelatedWork W4206729129 @default.
- W4224130862 hasRelatedWork W4377020778 @default.
- W4224130862 hasVolume "81" @default.
- W4224130862 isParatext "false" @default.
- W4224130862 isRetracted "false" @default.
- W4224130862 workType "article" @default.