Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224133650> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4224133650 endingPage "8" @default.
- W4224133650 startingPage "1" @default.
- W4224133650 abstract "The applications of AI in the healthcare sector are increasing day by day. The application of convolutional neural network (CNN) and mask-region-based CNN (Mask-RCCN) to the medical domain has really revolutionized medical image analysis. CNNs have been prominently used for identification, classification, and feature extraction tasks, and they have delivered a great performance at these tasks. In our study, we propose a lightweight CNN, which requires less time to train, for identifying malaria parasitic red blood cells and distinguishing them from healthy red blood cells. To compare the accuracy of our model, we used transfer learning on two models, namely, the VGG-19 and the Inception v3. We train our model in three different configurations depending on the proportion of data being fed to the model for training. For all three configurations, our proposed model is able to achieve an accuracy of around 96%, which is higher than both the other models that we trained for the same three configurations. It shows that our model is able to perform better along with low computational requirements. Therefore, it can be used more efficiently and can be easily deployed for detecting malaria cells." @default.
- W4224133650 created "2022-04-20" @default.
- W4224133650 creator A5011102503 @default.
- W4224133650 creator A5071317546 @default.
- W4224133650 date "2022-04-15" @default.
- W4224133650 modified "2023-09-26" @default.
- W4224133650 title "Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network" @default.
- W4224133650 cites W2108598243 @default.
- W4224133650 cites W2183341477 @default.
- W4224133650 cites W2194775991 @default.
- W4224133650 cites W2606416966 @default.
- W4224133650 cites W2885735575 @default.
- W4224133650 cites W3041038332 @default.
- W4224133650 cites W3042926029 @default.
- W4224133650 doi "https://doi.org/10.1155/2022/4176982" @default.
- W4224133650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35463192" @default.
- W4224133650 hasPublicationYear "2022" @default.
- W4224133650 type Work @default.
- W4224133650 citedByCount "3" @default.
- W4224133650 countsByYear W42241336502022 @default.
- W4224133650 countsByYear W42241336502023 @default.
- W4224133650 crossrefType "journal-article" @default.
- W4224133650 hasAuthorship W4224133650A5011102503 @default.
- W4224133650 hasAuthorship W4224133650A5071317546 @default.
- W4224133650 hasBestOaLocation W42241336501 @default.
- W4224133650 hasConcept C108583219 @default.
- W4224133650 hasConcept C116834253 @default.
- W4224133650 hasConcept C119857082 @default.
- W4224133650 hasConcept C134306372 @default.
- W4224133650 hasConcept C138885662 @default.
- W4224133650 hasConcept C142724271 @default.
- W4224133650 hasConcept C150899416 @default.
- W4224133650 hasConcept C153180895 @default.
- W4224133650 hasConcept C154945302 @default.
- W4224133650 hasConcept C2776401178 @default.
- W4224133650 hasConcept C2778048844 @default.
- W4224133650 hasConcept C33923547 @default.
- W4224133650 hasConcept C36503486 @default.
- W4224133650 hasConcept C41008148 @default.
- W4224133650 hasConcept C41895202 @default.
- W4224133650 hasConcept C50644808 @default.
- W4224133650 hasConcept C52622490 @default.
- W4224133650 hasConcept C59822182 @default.
- W4224133650 hasConcept C71924100 @default.
- W4224133650 hasConcept C81363708 @default.
- W4224133650 hasConcept C86803240 @default.
- W4224133650 hasConceptScore W4224133650C108583219 @default.
- W4224133650 hasConceptScore W4224133650C116834253 @default.
- W4224133650 hasConceptScore W4224133650C119857082 @default.
- W4224133650 hasConceptScore W4224133650C134306372 @default.
- W4224133650 hasConceptScore W4224133650C138885662 @default.
- W4224133650 hasConceptScore W4224133650C142724271 @default.
- W4224133650 hasConceptScore W4224133650C150899416 @default.
- W4224133650 hasConceptScore W4224133650C153180895 @default.
- W4224133650 hasConceptScore W4224133650C154945302 @default.
- W4224133650 hasConceptScore W4224133650C2776401178 @default.
- W4224133650 hasConceptScore W4224133650C2778048844 @default.
- W4224133650 hasConceptScore W4224133650C33923547 @default.
- W4224133650 hasConceptScore W4224133650C36503486 @default.
- W4224133650 hasConceptScore W4224133650C41008148 @default.
- W4224133650 hasConceptScore W4224133650C41895202 @default.
- W4224133650 hasConceptScore W4224133650C50644808 @default.
- W4224133650 hasConceptScore W4224133650C52622490 @default.
- W4224133650 hasConceptScore W4224133650C59822182 @default.
- W4224133650 hasConceptScore W4224133650C71924100 @default.
- W4224133650 hasConceptScore W4224133650C81363708 @default.
- W4224133650 hasConceptScore W4224133650C86803240 @default.
- W4224133650 hasLocation W42241336501 @default.
- W4224133650 hasLocation W42241336502 @default.
- W4224133650 hasLocation W42241336503 @default.
- W4224133650 hasLocation W42241336504 @default.
- W4224133650 hasOpenAccess W4224133650 @default.
- W4224133650 hasPrimaryLocation W42241336501 @default.
- W4224133650 hasRelatedWork W2279398222 @default.
- W4224133650 hasRelatedWork W2946016983 @default.
- W4224133650 hasRelatedWork W3018421652 @default.
- W4224133650 hasRelatedWork W3021430260 @default.
- W4224133650 hasRelatedWork W3091976719 @default.
- W4224133650 hasRelatedWork W3192840557 @default.
- W4224133650 hasRelatedWork W4220996320 @default.
- W4224133650 hasRelatedWork W4285149559 @default.
- W4224133650 hasRelatedWork W4299822940 @default.
- W4224133650 hasRelatedWork W4312200629 @default.
- W4224133650 hasVolume "2022" @default.
- W4224133650 isParatext "false" @default.
- W4224133650 isRetracted "false" @default.
- W4224133650 workType "article" @default.