Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224134610> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4224134610 abstract "The coronavirus emanated in Wuhan city of China, in the last month of 2019 and was even announced as a global threat. Social media could be an utterly noteworthy supply of facts during a time of crisis. User-generated texts yield perception into users' minds withinside the direction of such times, giving us insights into their critiques in addition to moods. This venture examines Twitter messages (tweets) regarding people's sentiment on the unconventional coronavirus. The essential aim of sentiment evaluation is the origin of human emotion from messages or tweets. This venture is geared toward using numerous gadgets studying type algorithms to expect the people's reception of the worldwide pandemic by reading their tweets on Twitter. In the course of this paper, we are testing our dataset on five different classifiers, namely Random Forest, Logistic regression, Multinomial naive Bayes, K-nearest neighbor, and Support vector machines classifiers. Together with precision rankings and balanced accuracy rankings, metrics are offered to gauge the fulfilment of the numerous algorithms implemented. The K-Nearest Neighbor classifier has given the highest precision score while the Logistic Regression classifier gives the highest recall, F1, accuracy and balanced accuracy scores." @default.
- W4224134610 created "2022-04-20" @default.
- W4224134610 creator A5039653624 @default.
- W4224134610 creator A5057660692 @default.
- W4224134610 creator A5059413306 @default.
- W4224134610 creator A5064570061 @default.
- W4224134610 date "2022-01-28" @default.
- W4224134610 modified "2023-10-01" @default.
- W4224134610 title "Analysing the Twitter Sentiments in COVID-19 Using Machine Learning Algorithms" @default.
- W4224134610 cites W147281455 @default.
- W4224134610 cites W1584308190 @default.
- W4224134610 cites W1773028378 @default.
- W4224134610 cites W2029940555 @default.
- W4224134610 cites W2031998113 @default.
- W4224134610 cites W2065800647 @default.
- W4224134610 cites W2153335082 @default.
- W4224134610 cites W2155632266 @default.
- W4224134610 cites W2171549478 @default.
- W4224134610 cites W2437617937 @default.
- W4224134610 cites W2605114433 @default.
- W4224134610 cites W2753683282 @default.
- W4224134610 cites W2772515592 @default.
- W4224134610 cites W2781473873 @default.
- W4224134610 cites W2999969809 @default.
- W4224134610 cites W3005502487 @default.
- W4224134610 cites W3011776577 @default.
- W4224134610 cites W3015461837 @default.
- W4224134610 cites W3020848637 @default.
- W4224134610 cites W3038780555 @default.
- W4224134610 cites W3099847344 @default.
- W4224134610 cites W3105951585 @default.
- W4224134610 cites W3126010905 @default.
- W4224134610 cites W3133078580 @default.
- W4224134610 cites W3192600070 @default.
- W4224134610 cites W3208248323 @default.
- W4224134610 doi "https://doi.org/10.1109/accai53970.2022.9752511" @default.
- W4224134610 hasPublicationYear "2022" @default.
- W4224134610 type Work @default.
- W4224134610 citedByCount "1" @default.
- W4224134610 countsByYear W42241346102023 @default.
- W4224134610 crossrefType "proceedings-article" @default.
- W4224134610 hasAuthorship W4224134610A5039653624 @default.
- W4224134610 hasAuthorship W4224134610A5057660692 @default.
- W4224134610 hasAuthorship W4224134610A5059413306 @default.
- W4224134610 hasAuthorship W4224134610A5064570061 @default.
- W4224134610 hasConcept C11413529 @default.
- W4224134610 hasConcept C117568660 @default.
- W4224134610 hasConcept C119857082 @default.
- W4224134610 hasConcept C12267149 @default.
- W4224134610 hasConcept C136764020 @default.
- W4224134610 hasConcept C148524875 @default.
- W4224134610 hasConcept C151956035 @default.
- W4224134610 hasConcept C154945302 @default.
- W4224134610 hasConcept C169258074 @default.
- W4224134610 hasConcept C41008148 @default.
- W4224134610 hasConcept C518677369 @default.
- W4224134610 hasConcept C52001869 @default.
- W4224134610 hasConcept C66402592 @default.
- W4224134610 hasConcept C81669768 @default.
- W4224134610 hasConcept C95623464 @default.
- W4224134610 hasConceptScore W4224134610C11413529 @default.
- W4224134610 hasConceptScore W4224134610C117568660 @default.
- W4224134610 hasConceptScore W4224134610C119857082 @default.
- W4224134610 hasConceptScore W4224134610C12267149 @default.
- W4224134610 hasConceptScore W4224134610C136764020 @default.
- W4224134610 hasConceptScore W4224134610C148524875 @default.
- W4224134610 hasConceptScore W4224134610C151956035 @default.
- W4224134610 hasConceptScore W4224134610C154945302 @default.
- W4224134610 hasConceptScore W4224134610C169258074 @default.
- W4224134610 hasConceptScore W4224134610C41008148 @default.
- W4224134610 hasConceptScore W4224134610C518677369 @default.
- W4224134610 hasConceptScore W4224134610C52001869 @default.
- W4224134610 hasConceptScore W4224134610C66402592 @default.
- W4224134610 hasConceptScore W4224134610C81669768 @default.
- W4224134610 hasConceptScore W4224134610C95623464 @default.
- W4224134610 hasLocation W42241346101 @default.
- W4224134610 hasOpenAccess W4224134610 @default.
- W4224134610 hasPrimaryLocation W42241346101 @default.
- W4224134610 hasRelatedWork W3137532542 @default.
- W4224134610 hasRelatedWork W4221021152 @default.
- W4224134610 hasRelatedWork W4221115169 @default.
- W4224134610 hasRelatedWork W4297900598 @default.
- W4224134610 hasRelatedWork W4312478656 @default.
- W4224134610 hasRelatedWork W4321636153 @default.
- W4224134610 hasRelatedWork W4360612004 @default.
- W4224134610 hasRelatedWork W4360772992 @default.
- W4224134610 hasRelatedWork W4377964522 @default.
- W4224134610 hasRelatedWork W4383535405 @default.
- W4224134610 isParatext "false" @default.
- W4224134610 isRetracted "false" @default.
- W4224134610 workType "article" @default.