Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224141331> ?p ?o ?g. }
- W4224141331 abstract "Molecular subtypes of breast cancer are important references to personalized clinical treatment. For cost and labor savings, only one of the patient's paraffin blocks is usually selected for subsequent immunohistochemistry (IHC) to obtain molecular subtypes. Inevitable block sampling error is risky due to the tumor heterogeneity and could result in a delay in treatment. Molecular subtype prediction from conventional H&E pathological whole slide images (WSI) using the AI method is useful and critical to assist pathologists to pre-screen proper paraffin block for IHC. It is a challenging task since only WSI-level labels of molecular subtypes from IHC can be obtained without detailed local region information. Gigapixel WSIs are divided into a huge amount of patches to be computationally feasible for deep learning, while with coarse slide-level labels, patch-based methods may suffer from abundant noise patches, such as folds, overstained regions, or non-tumor tissues. A weakly supervised learning framework based on discriminative patch selection and multi-instance learning was proposed for breast cancer molecular subtype prediction from H&E WSIs. Firstly, co-teaching strategy using two networks was adopted to learn molecular subtype representations and filter out some noise patches. Then, a balanced sampling strategy was used to handle the imbalance in subtypes in the dataset. In addition, a noise patch filtering algorithm that used local outlier factor based on cluster centers was proposed to further select discriminative patches. Finally, a loss function integrating local patch with global slide constraint information was used to fine-tune MIL framework on obtained discriminative patches and further improve the prediction performance of molecular subtyping. The experimental results confirmed the effectiveness of the proposed AI method and our models outperformed even senior pathologists, which has the potential to assist pathologists to pre-screen paraffin blocks for IHC in clinic." @default.
- W4224141331 created "2022-04-20" @default.
- W4224141331 creator A5008727986 @default.
- W4224141331 creator A5009987507 @default.
- W4224141331 creator A5014004127 @default.
- W4224141331 creator A5015694864 @default.
- W4224141331 creator A5015824704 @default.
- W4224141331 creator A5039642776 @default.
- W4224141331 creator A5043843432 @default.
- W4224141331 creator A5052830364 @default.
- W4224141331 creator A5057287134 @default.
- W4224141331 creator A5069597439 @default.
- W4224141331 creator A5070622545 @default.
- W4224141331 creator A5074950740 @default.
- W4224141331 creator A5080073856 @default.
- W4224141331 creator A5082117872 @default.
- W4224141331 date "2022-04-14" @default.
- W4224141331 modified "2023-10-13" @default.
- W4224141331 title "Breast Cancer Molecular Subtype Prediction on Pathological Images with Discriminative Patch Selection and Multi-Instance Learning" @default.
- W4224141331 cites W1967997862 @default.
- W4224141331 cites W2015103117 @default.
- W4224141331 cites W2027287130 @default.
- W4224141331 cites W2028927422 @default.
- W4224141331 cites W2109363337 @default.
- W4224141331 cites W2164457061 @default.
- W4224141331 cites W2194775991 @default.
- W4224141331 cites W2302302587 @default.
- W4224141331 cites W2560886373 @default.
- W4224141331 cites W2600723729 @default.
- W4224141331 cites W2745940724 @default.
- W4224141331 cites W2771169143 @default.
- W4224141331 cites W2772868173 @default.
- W4224141331 cites W2781712876 @default.
- W4224141331 cites W2912934043 @default.
- W4224141331 cites W2956228567 @default.
- W4224141331 cites W2962967409 @default.
- W4224141331 cites W2963735582 @default.
- W4224141331 cites W2963855133 @default.
- W4224141331 cites W2964047652 @default.
- W4224141331 cites W2971045153 @default.
- W4224141331 cites W2971376088 @default.
- W4224141331 cites W2997512706 @default.
- W4224141331 cites W3008355217 @default.
- W4224141331 cites W3021500318 @default.
- W4224141331 cites W3034447539 @default.
- W4224141331 cites W3036586801 @default.
- W4224141331 cites W3043535018 @default.
- W4224141331 cites W3089090082 @default.
- W4224141331 cites W3090501525 @default.
- W4224141331 cites W3091149861 @default.
- W4224141331 cites W3091730259 @default.
- W4224141331 cites W3141984075 @default.
- W4224141331 cites W3174485549 @default.
- W4224141331 cites W3175971657 @default.
- W4224141331 cites W3176719058 @default.
- W4224141331 cites W3189485988 @default.
- W4224141331 cites W3211647829 @default.
- W4224141331 doi "https://doi.org/10.3389/fonc.2022.858453" @default.
- W4224141331 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35494021" @default.
- W4224141331 hasPublicationYear "2022" @default.
- W4224141331 type Work @default.
- W4224141331 citedByCount "5" @default.
- W4224141331 countsByYear W42241413312023 @default.
- W4224141331 crossrefType "journal-article" @default.
- W4224141331 hasAuthorship W4224141331A5008727986 @default.
- W4224141331 hasAuthorship W4224141331A5009987507 @default.
- W4224141331 hasAuthorship W4224141331A5014004127 @default.
- W4224141331 hasAuthorship W4224141331A5015694864 @default.
- W4224141331 hasAuthorship W4224141331A5015824704 @default.
- W4224141331 hasAuthorship W4224141331A5039642776 @default.
- W4224141331 hasAuthorship W4224141331A5043843432 @default.
- W4224141331 hasAuthorship W4224141331A5052830364 @default.
- W4224141331 hasAuthorship W4224141331A5057287134 @default.
- W4224141331 hasAuthorship W4224141331A5069597439 @default.
- W4224141331 hasAuthorship W4224141331A5070622545 @default.
- W4224141331 hasAuthorship W4224141331A5074950740 @default.
- W4224141331 hasAuthorship W4224141331A5080073856 @default.
- W4224141331 hasAuthorship W4224141331A5082117872 @default.
- W4224141331 hasBestOaLocation W42241413311 @default.
- W4224141331 hasConcept C106131492 @default.
- W4224141331 hasConcept C115961682 @default.
- W4224141331 hasConcept C119857082 @default.
- W4224141331 hasConcept C121608353 @default.
- W4224141331 hasConcept C126322002 @default.
- W4224141331 hasConcept C140779682 @default.
- W4224141331 hasConcept C148483581 @default.
- W4224141331 hasConcept C153180895 @default.
- W4224141331 hasConcept C154945302 @default.
- W4224141331 hasConcept C2524010 @default.
- W4224141331 hasConcept C2777210771 @default.
- W4224141331 hasConcept C31972630 @default.
- W4224141331 hasConcept C33923547 @default.
- W4224141331 hasConcept C41008148 @default.
- W4224141331 hasConcept C530470458 @default.
- W4224141331 hasConcept C71924100 @default.
- W4224141331 hasConcept C79337645 @default.
- W4224141331 hasConcept C97931131 @default.
- W4224141331 hasConcept C99498987 @default.
- W4224141331 hasConceptScore W4224141331C106131492 @default.
- W4224141331 hasConceptScore W4224141331C115961682 @default.