Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224141411> ?p ?o ?g. }
- W4224141411 endingPage "106447" @default.
- W4224141411 startingPage "106447" @default.
- W4224141411 abstract "Mosquito-borne diseases are emerging and re-emerging across the globe, especially after the COVID19 pandemic. The recent advances in text mining in infectious diseases hold the potential of providing timely access to explicit and implicit associations among information in the text. In the past few years, the availability of online text data in the form of unstructured or semi-structured text with rich content of information from this domain enables many studies to provide solutions in this area, e.g., disease-related knowledge discovery, disease surveillance, early detection system, etc. However, a recent review of text mining in the domain of mosquito-borne disease was not available to the best of our knowledge. In this review, we survey the recent works in the text mining techniques used in combating mosquito-borne diseases. We highlight the corpus sources, technologies, applications, and the challenges faced by the studies, followed by the possible future directions that can be taken further in this domain. We present a bibliometric analysis of the 294 scientific articles that have been published in Scopus and PubMed in the domain of text mining in mosquito-borne diseases, from the year 2016 to 2021. The papers were further filtered and reviewed based on the techniques used to analyze the text related to mosquito-borne diseases. Based on the corpus of 158 selected articles, we found 27 of the articles were relevant and used text mining in mosquito-borne diseases. These articles covered the majority of Zika (38.70%), Dengue (32.26%), and Malaria (29.03%), with extremely low numbers or none of the other crucial mosquito-borne diseases like chikungunya, yellow fever, West Nile fever. Twitter was the dominant corpus resource to perform text mining in mosquito-borne diseases, followed by PubMed and LexisNexis databases. Sentiment analysis was the most popular technique of text mining to understand the discourse of the disease and followed by information extraction, which dependency relation and co-occurrence-based approach to extract relations and events. Surveillance was the main usage of most of the reviewed studies and followed by treatment, which focused on the drug-disease or symptom-disease association. The advance in text mining could improve the management of mosquito-borne diseases. However, the technique and application posed many limitations and challenges, including biases like user authentication and language, real-world implementation, etc. We discussed the future direction which can be useful to expand this area and domain. This review paper contributes mainly as a library for text mining in mosquito-borne diseases and could further explore the system for other neglected diseases." @default.
- W4224141411 created "2022-04-20" @default.
- W4224141411 creator A5005332202 @default.
- W4224141411 creator A5024329652 @default.
- W4224141411 creator A5043214567 @default.
- W4224141411 date "2022-07-01" @default.
- W4224141411 modified "2023-09-24" @default.
- W4224141411 title "Text mining in mosquito-borne disease: A systematic review" @default.
- W4224141411 cites W1819637045 @default.
- W4224141411 cites W1989852110 @default.
- W4224141411 cites W2014849717 @default.
- W4224141411 cites W2052920233 @default.
- W4224141411 cites W2085509274 @default.
- W4224141411 cites W2099369363 @default.
- W4224141411 cites W2103235794 @default.
- W4224141411 cites W2236252949 @default.
- W4224141411 cites W2279759548 @default.
- W4224141411 cites W2563042488 @default.
- W4224141411 cites W2766219136 @default.
- W4224141411 cites W2801647491 @default.
- W4224141411 cites W2807082048 @default.
- W4224141411 cites W2908176506 @default.
- W4224141411 cites W2983562253 @default.
- W4224141411 cites W2995991976 @default.
- W4224141411 cites W2998574456 @default.
- W4224141411 cites W3009576683 @default.
- W4224141411 cites W3024433843 @default.
- W4224141411 cites W3036066542 @default.
- W4224141411 cites W3082835053 @default.
- W4224141411 cites W3118481307 @default.
- W4224141411 cites W3157121829 @default.
- W4224141411 cites W3201935691 @default.
- W4224141411 cites W3204348134 @default.
- W4224141411 doi "https://doi.org/10.1016/j.actatropica.2022.106447" @default.
- W4224141411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35430265" @default.
- W4224141411 hasPublicationYear "2022" @default.
- W4224141411 type Work @default.
- W4224141411 citedByCount "7" @default.
- W4224141411 countsByYear W42241414112022 @default.
- W4224141411 countsByYear W42241414112023 @default.
- W4224141411 crossrefType "journal-article" @default.
- W4224141411 hasAuthorship W4224141411A5005332202 @default.
- W4224141411 hasAuthorship W4224141411A5024329652 @default.
- W4224141411 hasAuthorship W4224141411A5043214567 @default.
- W4224141411 hasBestOaLocation W42241414112 @default.
- W4224141411 hasConcept C118487528 @default.
- W4224141411 hasConcept C120567893 @default.
- W4224141411 hasConcept C124101348 @default.
- W4224141411 hasConcept C134306372 @default.
- W4224141411 hasConcept C142724271 @default.
- W4224141411 hasConcept C154945302 @default.
- W4224141411 hasConcept C165141518 @default.
- W4224141411 hasConcept C171686336 @default.
- W4224141411 hasConcept C2522767166 @default.
- W4224141411 hasConcept C2775899829 @default.
- W4224141411 hasConcept C2778048844 @default.
- W4224141411 hasConcept C2779134260 @default.
- W4224141411 hasConcept C2779473830 @default.
- W4224141411 hasConcept C33923547 @default.
- W4224141411 hasConcept C36503486 @default.
- W4224141411 hasConcept C41008148 @default.
- W4224141411 hasConcept C533803919 @default.
- W4224141411 hasConcept C55493867 @default.
- W4224141411 hasConcept C71472368 @default.
- W4224141411 hasConcept C71924100 @default.
- W4224141411 hasConcept C83867959 @default.
- W4224141411 hasConcept C86803240 @default.
- W4224141411 hasConceptScore W4224141411C118487528 @default.
- W4224141411 hasConceptScore W4224141411C120567893 @default.
- W4224141411 hasConceptScore W4224141411C124101348 @default.
- W4224141411 hasConceptScore W4224141411C134306372 @default.
- W4224141411 hasConceptScore W4224141411C142724271 @default.
- W4224141411 hasConceptScore W4224141411C154945302 @default.
- W4224141411 hasConceptScore W4224141411C165141518 @default.
- W4224141411 hasConceptScore W4224141411C171686336 @default.
- W4224141411 hasConceptScore W4224141411C2522767166 @default.
- W4224141411 hasConceptScore W4224141411C2775899829 @default.
- W4224141411 hasConceptScore W4224141411C2778048844 @default.
- W4224141411 hasConceptScore W4224141411C2779134260 @default.
- W4224141411 hasConceptScore W4224141411C2779473830 @default.
- W4224141411 hasConceptScore W4224141411C33923547 @default.
- W4224141411 hasConceptScore W4224141411C36503486 @default.
- W4224141411 hasConceptScore W4224141411C41008148 @default.
- W4224141411 hasConceptScore W4224141411C533803919 @default.
- W4224141411 hasConceptScore W4224141411C55493867 @default.
- W4224141411 hasConceptScore W4224141411C71472368 @default.
- W4224141411 hasConceptScore W4224141411C71924100 @default.
- W4224141411 hasConceptScore W4224141411C83867959 @default.
- W4224141411 hasConceptScore W4224141411C86803240 @default.
- W4224141411 hasLocation W42241414111 @default.
- W4224141411 hasLocation W42241414112 @default.
- W4224141411 hasLocation W42241414113 @default.
- W4224141411 hasOpenAccess W4224141411 @default.
- W4224141411 hasPrimaryLocation W42241414111 @default.
- W4224141411 hasRelatedWork W1514912413 @default.
- W4224141411 hasRelatedWork W2040022066 @default.
- W4224141411 hasRelatedWork W2166706013 @default.
- W4224141411 hasRelatedWork W2335237042 @default.