Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224143574> ?p ?o ?g. }
- W4224143574 abstract "1 Abstract Magneto- and electroencephalography (M/EEG) are widespread techniques to measure neural activity in-vivo at a high temporal resolution but relatively low spatial resolution. Locating the sources underlying the M/EEG poses an inverse problem, which is itself ill-posed. In recent years, a new class of source imaging methods was developed based on artificial neural networks. We present a long-short term memory (LSTM) network to solve the M/EEG inverse problem. It integrates low computational cost, exploitation of both the coarse spatial but also the excellent temporal information from the EEG, input flexibility and robustness to noise. We compared the LSTM network with classical inverse solutions using both simulation data and real EEG data, recorded in epileptic patients during intracranial stimulation. The LSTM network shows higher accuracy on multiple metrics and for varying numbers of neural sources, compared to classical inverse solutions but also compared to our alternative architecture without integration of temporal information. The performance of the LSTM network regarding its robustness to noise and low localization errors renders it a promising inverse solution to be considered in future source localization studies and for clinical applications." @default.
- W4224143574 created "2022-04-20" @default.
- W4224143574 creator A5004190967 @default.
- W4224143574 creator A5020134466 @default.
- W4224143574 creator A5024286910 @default.
- W4224143574 creator A5031160361 @default.
- W4224143574 date "2022-04-14" @default.
- W4224143574 modified "2023-10-11" @default.
- W4224143574 title "Evaluation of Long-Short Term Memory Networks for M/EEG Source Imaging with Simulated and Real EEG Data" @default.
- W4224143574 cites W1973042443 @default.
- W4224143574 cites W1975925308 @default.
- W4224143574 cites W1995341919 @default.
- W4224143574 cites W2014030649 @default.
- W4224143574 cites W2031425398 @default.
- W4224143574 cites W2036020139 @default.
- W4224143574 cites W2037420423 @default.
- W4224143574 cites W2040870580 @default.
- W4224143574 cites W2045125028 @default.
- W4224143574 cites W2064675550 @default.
- W4224143574 cites W2082371233 @default.
- W4224143574 cites W2090530235 @default.
- W4224143574 cites W2104367843 @default.
- W4224143574 cites W2110437310 @default.
- W4224143574 cites W2120078534 @default.
- W4224143574 cites W2127786259 @default.
- W4224143574 cites W2131774270 @default.
- W4224143574 cites W2146493929 @default.
- W4224143574 cites W2151721316 @default.
- W4224143574 cites W2155136387 @default.
- W4224143574 cites W2160967456 @default.
- W4224143574 cites W2167546316 @default.
- W4224143574 cites W2194775991 @default.
- W4224143574 cites W2286282952 @default.
- W4224143574 cites W2334566563 @default.
- W4224143574 cites W2550225294 @default.
- W4224143574 cites W2574952845 @default.
- W4224143574 cites W2590144118 @default.
- W4224143574 cites W2741907166 @default.
- W4224143574 cites W2767788608 @default.
- W4224143574 cites W2772704314 @default.
- W4224143574 cites W2790994475 @default.
- W4224143574 cites W2811472593 @default.
- W4224143574 cites W2927702442 @default.
- W4224143574 cites W2953732210 @default.
- W4224143574 cites W2981473862 @default.
- W4224143574 cites W3015866773 @default.
- W4224143574 cites W3018678682 @default.
- W4224143574 cites W3025513436 @default.
- W4224143574 cites W3103074262 @default.
- W4224143574 cites W3135096805 @default.
- W4224143574 cites W3176138698 @default.
- W4224143574 cites W3176799826 @default.
- W4224143574 cites W3201317166 @default.
- W4224143574 cites W4223537363 @default.
- W4224143574 cites W4246971423 @default.
- W4224143574 cites W4250543537 @default.
- W4224143574 cites W4288036170 @default.
- W4224143574 cites W614292567 @default.
- W4224143574 doi "https://doi.org/10.1101/2022.04.13.488148" @default.
- W4224143574 hasPublicationYear "2022" @default.
- W4224143574 type Work @default.
- W4224143574 citedByCount "4" @default.
- W4224143574 countsByYear W42241435742022 @default.
- W4224143574 countsByYear W42241435742023 @default.
- W4224143574 crossrefType "posted-content" @default.
- W4224143574 hasAuthorship W4224143574A5004190967 @default.
- W4224143574 hasAuthorship W4224143574A5020134466 @default.
- W4224143574 hasAuthorship W4224143574A5024286910 @default.
- W4224143574 hasAuthorship W4224143574A5031160361 @default.
- W4224143574 hasBestOaLocation W42241435741 @default.
- W4224143574 hasConcept C104317684 @default.
- W4224143574 hasConcept C134306372 @default.
- W4224143574 hasConcept C135252773 @default.
- W4224143574 hasConcept C153180895 @default.
- W4224143574 hasConcept C154945302 @default.
- W4224143574 hasConcept C15744967 @default.
- W4224143574 hasConcept C169760540 @default.
- W4224143574 hasConcept C185592680 @default.
- W4224143574 hasConcept C207467116 @default.
- W4224143574 hasConcept C2524010 @default.
- W4224143574 hasConcept C33923547 @default.
- W4224143574 hasConcept C41008148 @default.
- W4224143574 hasConcept C50644808 @default.
- W4224143574 hasConcept C522805319 @default.
- W4224143574 hasConcept C55493867 @default.
- W4224143574 hasConcept C63479239 @default.
- W4224143574 hasConceptScore W4224143574C104317684 @default.
- W4224143574 hasConceptScore W4224143574C134306372 @default.
- W4224143574 hasConceptScore W4224143574C135252773 @default.
- W4224143574 hasConceptScore W4224143574C153180895 @default.
- W4224143574 hasConceptScore W4224143574C154945302 @default.
- W4224143574 hasConceptScore W4224143574C15744967 @default.
- W4224143574 hasConceptScore W4224143574C169760540 @default.
- W4224143574 hasConceptScore W4224143574C185592680 @default.
- W4224143574 hasConceptScore W4224143574C207467116 @default.
- W4224143574 hasConceptScore W4224143574C2524010 @default.
- W4224143574 hasConceptScore W4224143574C33923547 @default.
- W4224143574 hasConceptScore W4224143574C41008148 @default.
- W4224143574 hasConceptScore W4224143574C50644808 @default.
- W4224143574 hasConceptScore W4224143574C522805319 @default.