Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224145093> ?p ?o ?g. }
- W4224145093 endingPage "111" @default.
- W4224145093 startingPage "97" @default.
- W4224145093 abstract "As a primary sediment source, gully erosion leads to severe land degradation and poses a threat to food and ecological security. Therefore, identification of susceptible areas is critical to the prevention and control of gully erosion. This study aimed to identify areas prone to gully erosion using four machine learning methods with derived topographic attributes. Eight topographic attributes (elevation, slope aspect, slope degree, catchment area, plan curvature, profile curvature, stream power index, and topographic wetness index) were derived as feature variables controlling gully occurrence from digital elevation models with four different pixel sizes (5.0 m, 12.5 m, 20.0 m, and 30.0 m). A gully inventory map of a small agricultural catchment in Heilongjiang, China, was prepared through a combination of field surveys and satellite imagery. Each topographic attribute dataset was randomly divided into two portions of 70% and 30% for calibrating and validating four machine learning methods, namely random forest (RF), support vector machines (SVM), artificial neural network (ANN), and generalized linear models (GLM). Accuracy (ACC), area under the receiver operating characteristic curve (AUC), root mean square error (RMSE), and mean absolute error (MAE) were calculated to assess the performance of the four machine learning methods in predicting spatial distribution of gully erosion susceptibility (GES). The results suggested that the selected topographic attributes were capable of predicting GES in the study catchment area. A pixel size of 20.0 m was optimal for all four machine learning methods. The RF method described the spatial relationship between the feature variables and gully occurrence with the greatest accuracy, as it returned the highest values of ACC (0.917) and AUC (0.905) at a 20.0 m resolution. The RF was also the least sensitive to resolutions, followed by SVM (ACC = 0.781–0.891, AUC = 0.724–0.861) and ANN (ACC = 0.744–0.808, AUC = 0.649–0.847). GLM performed poorly in this study (ACC = 0.693–0.757, AUC = 0.608–0.703). Based on the spatial distribution of GES determined using the optimal method (RF + pixel size of 20.0 m), 16% of the study area has very high level susceptibility classes, whereas areas with high, moderate, and low levels of susceptibility make up approximately 24%, 30%, and 31% of the study area, respectively. Our results demonstrate that GES assessment with machine learning methods can successfully identify areas prone to gully erosion, providing reference information for future soil conservation plans and land management. In addition, pixel size (resolution) is the key consideration when preparing suitable datasets of feature variables for GES assessment." @default.
- W4224145093 created "2022-04-20" @default.
- W4224145093 creator A5012540840 @default.
- W4224145093 creator A5029940872 @default.
- W4224145093 creator A5071512816 @default.
- W4224145093 creator A5077589028 @default.
- W4224145093 creator A5084640464 @default.
- W4224145093 date "2023-03-01" @default.
- W4224145093 modified "2023-10-15" @default.
- W4224145093 title "Assessment of gully erosion susceptibility using different DEM-derived topographic factors in the black soil region of Northeast China" @default.
- W4224145093 cites W1709494502 @default.
- W4224145093 cites W1964130720 @default.
- W4224145093 cites W1965765785 @default.
- W4224145093 cites W1971765817 @default.
- W4224145093 cites W1977662520 @default.
- W4224145093 cites W1983989415 @default.
- W4224145093 cites W1988650824 @default.
- W4224145093 cites W1998269267 @default.
- W4224145093 cites W2012184028 @default.
- W4224145093 cites W2020010421 @default.
- W4224145093 cites W2037630084 @default.
- W4224145093 cites W2042066319 @default.
- W4224145093 cites W2045076638 @default.
- W4224145093 cites W2046629514 @default.
- W4224145093 cites W2046982536 @default.
- W4224145093 cites W2053154970 @default.
- W4224145093 cites W2070442241 @default.
- W4224145093 cites W2116906800 @default.
- W4224145093 cites W2140964565 @default.
- W4224145093 cites W2143296882 @default.
- W4224145093 cites W2269516007 @default.
- W4224145093 cites W2288793677 @default.
- W4224145093 cites W2341302447 @default.
- W4224145093 cites W2511416858 @default.
- W4224145093 cites W2564393432 @default.
- W4224145093 cites W2581904945 @default.
- W4224145093 cites W2606963357 @default.
- W4224145093 cites W2738960802 @default.
- W4224145093 cites W2741517055 @default.
- W4224145093 cites W2744156546 @default.
- W4224145093 cites W2757017010 @default.
- W4224145093 cites W2757787785 @default.
- W4224145093 cites W2758840874 @default.
- W4224145093 cites W2761962795 @default.
- W4224145093 cites W2766199789 @default.
- W4224145093 cites W2770793789 @default.
- W4224145093 cites W2775745878 @default.
- W4224145093 cites W2793127258 @default.
- W4224145093 cites W2806889219 @default.
- W4224145093 cites W2890018514 @default.
- W4224145093 cites W2896791226 @default.
- W4224145093 cites W2909193898 @default.
- W4224145093 cites W2911688499 @default.
- W4224145093 cites W2911964244 @default.
- W4224145093 cites W2920325774 @default.
- W4224145093 cites W2938476651 @default.
- W4224145093 cites W2970567246 @default.
- W4224145093 cites W2980019625 @default.
- W4224145093 cites W3044625706 @default.
- W4224145093 cites W3049674923 @default.
- W4224145093 cites W3084944027 @default.
- W4224145093 cites W3109383178 @default.
- W4224145093 cites W3110386290 @default.
- W4224145093 cites W3128760387 @default.
- W4224145093 cites W3138535829 @default.
- W4224145093 cites W3140276143 @default.
- W4224145093 cites W3148356478 @default.
- W4224145093 cites W3154146875 @default.
- W4224145093 cites W3159671785 @default.
- W4224145093 cites W3166182933 @default.
- W4224145093 cites W3172885010 @default.
- W4224145093 cites W3180662526 @default.
- W4224145093 cites W3184163586 @default.
- W4224145093 cites W3199190751 @default.
- W4224145093 cites W938146982 @default.
- W4224145093 doi "https://doi.org/10.1016/j.iswcr.2022.04.001" @default.
- W4224145093 hasPublicationYear "2023" @default.
- W4224145093 type Work @default.
- W4224145093 citedByCount "8" @default.
- W4224145093 countsByYear W42241450932023 @default.
- W4224145093 crossrefType "journal-article" @default.
- W4224145093 hasAuthorship W4224145093A5012540840 @default.
- W4224145093 hasAuthorship W4224145093A5029940872 @default.
- W4224145093 hasAuthorship W4224145093A5071512816 @default.
- W4224145093 hasAuthorship W4224145093A5077589028 @default.
- W4224145093 hasAuthorship W4224145093A5084640464 @default.
- W4224145093 hasBestOaLocation W42241450931 @default.
- W4224145093 hasConcept C105795698 @default.
- W4224145093 hasConcept C114793014 @default.
- W4224145093 hasConcept C123157820 @default.
- W4224145093 hasConcept C127313418 @default.
- W4224145093 hasConcept C138885662 @default.
- W4224145093 hasConcept C139945424 @default.
- W4224145093 hasConcept C154945302 @default.
- W4224145093 hasConcept C169258074 @default.
- W4224145093 hasConcept C181843262 @default.
- W4224145093 hasConcept C187320778 @default.
- W4224145093 hasConcept C2524010 @default.