Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224211730> ?p ?o ?g. }
- W4224211730 endingPage "94" @default.
- W4224211730 startingPage "71" @default.
- W4224211730 abstract "The explosion of data volumes generated by an increasing number of applications is strongly impacting the evolution of distributed digital infrastructures for data analytics and machine learning (ML). While data analytics used to be mainly performed on cloud infrastructures, the rapid development of IoT infrastructures and the requirements for low-latency, secure processing has motivated the development of edge analytics. Today, to balance various trade-offs, ML-based analytics tends to increasingly leverage an interconnected ecosystem that allows complex applications to be executed on hybrid infrastructures where IoT Edge devices are interconnected to Cloud/HPC systems in what is called the Computing Continuum, the Digital Continuum, or the Transcontinuum.Enabling learning-based analytics on such complex infrastructures is challenging. The large scale and optimized deployment of learning-based workflows across the Edge-to-Cloud Continuum requires extensive and reproducible experimental analysis of the application execution on representative testbeds. This is necessary to help understand the performance trade-offs that result from combining a variety of learning paradigms and supportive frameworks. A thorough experimental analysis requires the assessment of the impact of multiple factors, such as: model accuracy, training time, network overhead, energy consumption, processing latency, among others.This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today. It describes the main learning paradigms enabling learning-based analytics on the Edge-to-Cloud Continuum. The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed. Furthermore, we analyze how the selected systems provide support for experiment reproducibility. We conclude our review with a detailed discussion of relevant open research challenges and of future directions in this domain such as: holistic understanding of performance; performance optimization of applications;efficient deployment of Artificial Intelligence (AI) workflows on highly heterogeneous infrastructures; and reproducible analysis of experiments on the Computing Continuum." @default.
- W4224211730 created "2022-04-26" @default.
- W4224211730 creator A5041964026 @default.
- W4224211730 creator A5071296200 @default.
- W4224211730 creator A5072711898 @default.
- W4224211730 creator A5077818565 @default.
- W4224211730 date "2022-08-01" @default.
- W4224211730 modified "2023-10-14" @default.
- W4224211730 title "Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature review" @default.
- W4224211730 cites W1975274762 @default.
- W4224211730 cites W2043510950 @default.
- W4224211730 cites W2045287414 @default.
- W4224211730 cites W2045400477 @default.
- W4224211730 cites W2101130528 @default.
- W4224211730 cites W2101786389 @default.
- W4224211730 cites W2111364199 @default.
- W4224211730 cites W2151635674 @default.
- W4224211730 cites W2158054309 @default.
- W4224211730 cites W2165698076 @default.
- W4224211730 cites W2310612427 @default.
- W4224211730 cites W2414114959 @default.
- W4224211730 cites W2538255784 @default.
- W4224211730 cites W2563098348 @default.
- W4224211730 cites W2573834517 @default.
- W4224211730 cites W2595543006 @default.
- W4224211730 cites W2598890134 @default.
- W4224211730 cites W2605945764 @default.
- W4224211730 cites W2609731728 @default.
- W4224211730 cites W2615758719 @default.
- W4224211730 cites W2765928558 @default.
- W4224211730 cites W2772750884 @default.
- W4224211730 cites W2784214160 @default.
- W4224211730 cites W2793058325 @default.
- W4224211730 cites W2803258972 @default.
- W4224211730 cites W2803864529 @default.
- W4224211730 cites W2808422915 @default.
- W4224211730 cites W2872013922 @default.
- W4224211730 cites W2884606811 @default.
- W4224211730 cites W2885657717 @default.
- W4224211730 cites W2887826900 @default.
- W4224211730 cites W2889850233 @default.
- W4224211730 cites W2895501059 @default.
- W4224211730 cites W2896727370 @default.
- W4224211730 cites W2898210097 @default.
- W4224211730 cites W2899478246 @default.
- W4224211730 cites W2902264868 @default.
- W4224211730 cites W2909545524 @default.
- W4224211730 cites W2910096450 @default.
- W4224211730 cites W2911964244 @default.
- W4224211730 cites W2918017075 @default.
- W4224211730 cites W2929559746 @default.
- W4224211730 cites W2934302500 @default.
- W4224211730 cites W2953738034 @default.
- W4224211730 cites W2956755329 @default.
- W4224211730 cites W2960833983 @default.
- W4224211730 cites W2962883549 @default.
- W4224211730 cites W2963080877 @default.
- W4224211730 cites W2964248614 @default.
- W4224211730 cites W2971544482 @default.
- W4224211730 cites W2972234767 @default.
- W4224211730 cites W2974110037 @default.
- W4224211730 cites W2980856918 @default.
- W4224211730 cites W2993798294 @default.
- W4224211730 cites W2999832078 @default.
- W4224211730 cites W3001314319 @default.
- W4224211730 cites W3006372726 @default.
- W4224211730 cites W3006715244 @default.
- W4224211730 cites W3023878251 @default.
- W4224211730 cites W3025045095 @default.
- W4224211730 cites W3026359008 @default.
- W4224211730 cites W3031932179 @default.
- W4224211730 cites W3039057778 @default.
- W4224211730 cites W3048498988 @default.
- W4224211730 cites W3086811561 @default.
- W4224211730 cites W3087928288 @default.
- W4224211730 cites W3088384007 @default.
- W4224211730 cites W3091783553 @default.
- W4224211730 cites W3094716077 @default.
- W4224211730 cites W3098769338 @default.
- W4224211730 cites W3132456257 @default.
- W4224211730 cites W3133610307 @default.
- W4224211730 cites W3138518494 @default.
- W4224211730 cites W3189663779 @default.
- W4224211730 cites W4200147759 @default.
- W4224211730 cites W4200152024 @default.
- W4224211730 cites W4210409705 @default.
- W4224211730 cites W4210713267 @default.
- W4224211730 cites W4210793036 @default.
- W4224211730 doi "https://doi.org/10.1016/j.jpdc.2022.04.004" @default.
- W4224211730 hasPublicationYear "2022" @default.
- W4224211730 type Work @default.
- W4224211730 citedByCount "25" @default.
- W4224211730 countsByYear W42242117302022 @default.
- W4224211730 countsByYear W42242117302023 @default.
- W4224211730 crossrefType "journal-article" @default.
- W4224211730 hasAuthorship W4224211730A5041964026 @default.
- W4224211730 hasAuthorship W4224211730A5071296200 @default.
- W4224211730 hasAuthorship W4224211730A5072711898 @default.