Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224213091> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4224213091 abstract "Recent research is trying to leverage occupants' demand in the building's control loop to consider individuals' well-being and the buildings' energy savings. To that end, a real-time feedback system is needed to provide data about occupants' comfort conditions that can be used to control the building's heating, cooling, and air conditioning (HVAC) system. The emergence of thermal imaging techniques provides an excellent opportunity for contactless data gathering with no interruption in occupant conditions and activities. There is increasing attention to infrared thermal camera usage in public buildings because of their non-invasive quality in reading the human skin temperature. However, the state-of-the-art methods need additional modifications to become more reliable. To capitalize potentials and address some existing limitations, new solutions are required to bring a more holistic view toward non-intrusive thermal scanning by leveraging the benefit of machine learning and image processing. This research implements an automated approach to collect and register simultaneous thermal and visual images and read the facial temperature in different regions. This paper also presents two additional investigations. First, through utilizing IButton wearable thermal sensors on the forehead area, we investigate the reliability of an in-expensive thermal camera (FLIR Lepton) in reading the skin temperature. Second, by studying the false-color version of thermal images, we look into the possibility of non-radiometric thermal images for predicting personalized thermal comfort. The results shows the strong performance of Random Forest and K-Nearest Neighbor prediction algorithms in predicting personalized thermal comfort. In addition, we have found that non-radiometric images can also indicate thermal comfort when the algorithm is trained with larger amounts of data." @default.
- W4224213091 created "2022-04-26" @default.
- W4224213091 creator A5063615699 @default.
- W4224213091 creator A5066888701 @default.
- W4224213091 creator A5068143931 @default.
- W4224213091 date "2022-04-14" @default.
- W4224213091 modified "2023-09-26" @default.
- W4224213091 title "Machine Learning-Based Automated Thermal Comfort Prediction: Integration of Low-Cost Thermal and Visual Cameras for Higher Accuracy" @default.
- W4224213091 doi "https://doi.org/10.48550/arxiv.2204.08463" @default.
- W4224213091 hasPublicationYear "2022" @default.
- W4224213091 type Work @default.
- W4224213091 citedByCount "0" @default.
- W4224213091 crossrefType "posted-content" @default.
- W4224213091 hasAuthorship W4224213091A5063615699 @default.
- W4224213091 hasAuthorship W4224213091A5066888701 @default.
- W4224213091 hasAuthorship W4224213091A5068143931 @default.
- W4224213091 hasBestOaLocation W42242130911 @default.
- W4224213091 hasConcept C103742991 @default.
- W4224213091 hasConcept C121332964 @default.
- W4224213091 hasConcept C122346748 @default.
- W4224213091 hasConcept C127413603 @default.
- W4224213091 hasConcept C133913538 @default.
- W4224213091 hasConcept C153083717 @default.
- W4224213091 hasConcept C153294291 @default.
- W4224213091 hasConcept C154945302 @default.
- W4224213091 hasConcept C163258240 @default.
- W4224213091 hasConcept C204530211 @default.
- W4224213091 hasConcept C31972630 @default.
- W4224213091 hasConcept C41008148 @default.
- W4224213091 hasConcept C43214815 @default.
- W4224213091 hasConcept C44154836 @default.
- W4224213091 hasConcept C62520636 @default.
- W4224213091 hasConcept C78519656 @default.
- W4224213091 hasConcept C97355855 @default.
- W4224213091 hasConceptScore W4224213091C103742991 @default.
- W4224213091 hasConceptScore W4224213091C121332964 @default.
- W4224213091 hasConceptScore W4224213091C122346748 @default.
- W4224213091 hasConceptScore W4224213091C127413603 @default.
- W4224213091 hasConceptScore W4224213091C133913538 @default.
- W4224213091 hasConceptScore W4224213091C153083717 @default.
- W4224213091 hasConceptScore W4224213091C153294291 @default.
- W4224213091 hasConceptScore W4224213091C154945302 @default.
- W4224213091 hasConceptScore W4224213091C163258240 @default.
- W4224213091 hasConceptScore W4224213091C204530211 @default.
- W4224213091 hasConceptScore W4224213091C31972630 @default.
- W4224213091 hasConceptScore W4224213091C41008148 @default.
- W4224213091 hasConceptScore W4224213091C43214815 @default.
- W4224213091 hasConceptScore W4224213091C44154836 @default.
- W4224213091 hasConceptScore W4224213091C62520636 @default.
- W4224213091 hasConceptScore W4224213091C78519656 @default.
- W4224213091 hasConceptScore W4224213091C97355855 @default.
- W4224213091 hasLocation W42242130911 @default.
- W4224213091 hasOpenAccess W4224213091 @default.
- W4224213091 hasPrimaryLocation W42242130911 @default.
- W4224213091 hasRelatedWork W1999827940 @default.
- W4224213091 hasRelatedWork W2023196108 @default.
- W4224213091 hasRelatedWork W2035970485 @default.
- W4224213091 hasRelatedWork W2376598862 @default.
- W4224213091 hasRelatedWork W2737809295 @default.
- W4224213091 hasRelatedWork W2747447974 @default.
- W4224213091 hasRelatedWork W4280637129 @default.
- W4224213091 hasRelatedWork W4293420055 @default.
- W4224213091 hasRelatedWork W4299659734 @default.
- W4224213091 hasRelatedWork W4310018934 @default.
- W4224213091 isParatext "false" @default.
- W4224213091 isRetracted "false" @default.
- W4224213091 workType "article" @default.