Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224222383> ?p ?o ?g. }
- W4224222383 endingPage "115001" @default.
- W4224222383 startingPage "115001" @default.
- W4224222383 abstract "Objective.There are several x-ray computed tomography (CT) scanning strategies used to reduce radiation dose, such as (1) sparse-view CT, (2) low-dose CT and (3) region-of-interest (ROI) CT (called interior tomography). To further reduce the dose, sparse-view and/or low-dose CT settings can be applied together with interior tomography. Interior tomography has various advantages in terms of reducing the number of detectors and decreasing the x-ray radiation dose. However, a large patient or a small field-of-view (FOV) detector can cause truncated projections, and then the reconstructed images suffer from severe cupping artifacts. In addition, although low-dose CT can reduce the radiation exposure dose, analytic reconstruction algorithms produce image noise. Recently, many researchers have utilized image-domain deep learning (DL) approaches to remove each artifact and demonstrated impressive performances, and the theory of deep convolutional framelets supports the reason for the performance improvement.Approach.In this paper, we found that it is difficult to solve coupled artifacts using an image-domain convolutional neural network (CNN) based on deep convolutional framelets.Significance.To address the coupled problem, we decouple it into two sub-problems: (i) image-domain noise reduction inside the truncated projection to solve low-dose CT problem and (ii) extrapolation of the projection outside the truncated projection to solve the ROI CT problem. The decoupled sub-problems are solved directly with a novel proposed end-to-end learning method using dual-domain CNNs.Main results.We demonstrate that the proposed method outperforms the conventional image-domain DL methods, and a projection-domain CNN shows better performance than the image-domain CNNs commonly used by many researchers." @default.
- W4224222383 created "2022-04-26" @default.
- W4224222383 creator A5027171928 @default.
- W4224222383 creator A5038806083 @default.
- W4224222383 creator A5051533773 @default.
- W4224222383 creator A5058429770 @default.
- W4224222383 date "2022-05-16" @default.
- W4224222383 modified "2023-09-27" @default.
- W4224222383 title "End-to-end deep learning for interior tomography with low-dose x-ray CT" @default.
- W4224222383 cites W1562968274 @default.
- W4224222383 cites W1882111414 @default.
- W4224222383 cites W1901129140 @default.
- W4224222383 cites W1968238516 @default.
- W4224222383 cites W1974125392 @default.
- W4224222383 cites W1980003430 @default.
- W4224222383 cites W1999320095 @default.
- W4224222383 cites W2009979575 @default.
- W4224222383 cites W2037067321 @default.
- W4224222383 cites W2039574235 @default.
- W4224222383 cites W2058808032 @default.
- W4224222383 cites W2071847032 @default.
- W4224222383 cites W2096309518 @default.
- W4224222383 cites W2118916039 @default.
- W4224222383 cites W2165565866 @default.
- W4224222383 cites W2168591365 @default.
- W4224222383 cites W2226146394 @default.
- W4224222383 cites W2280386000 @default.
- W4224222383 cites W2319126251 @default.
- W4224222383 cites W2469946482 @default.
- W4224222383 cites W2574952845 @default.
- W4224222383 cites W2584483805 @default.
- W4224222383 cites W2617128058 @default.
- W4224222383 cites W2761343114 @default.
- W4224222383 cites W2767579567 @default.
- W4224222383 cites W2777802649 @default.
- W4224222383 cites W2795380527 @default.
- W4224222383 cites W2962903101 @default.
- W4224222383 cites W2963392702 @default.
- W4224222383 cites W2993817755 @default.
- W4224222383 cites W3104324122 @default.
- W4224222383 cites W3105751747 @default.
- W4224222383 cites W3163309171 @default.
- W4224222383 doi "https://doi.org/10.1088/1361-6560/ac6560" @default.
- W4224222383 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35390782" @default.
- W4224222383 hasPublicationYear "2022" @default.
- W4224222383 type Work @default.
- W4224222383 citedByCount "5" @default.
- W4224222383 countsByYear W42242223832022 @default.
- W4224222383 countsByYear W42242223832023 @default.
- W4224222383 crossrefType "journal-article" @default.
- W4224222383 hasAuthorship W4224222383A5027171928 @default.
- W4224222383 hasAuthorship W4224222383A5038806083 @default.
- W4224222383 hasAuthorship W4224222383A5051533773 @default.
- W4224222383 hasAuthorship W4224222383A5058429770 @default.
- W4224222383 hasConcept C108583219 @default.
- W4224222383 hasConcept C111335779 @default.
- W4224222383 hasConcept C11413529 @default.
- W4224222383 hasConcept C115961682 @default.
- W4224222383 hasConcept C120665830 @default.
- W4224222383 hasConcept C121332964 @default.
- W4224222383 hasConcept C141379421 @default.
- W4224222383 hasConcept C154945302 @default.
- W4224222383 hasConcept C163716698 @default.
- W4224222383 hasConcept C2524010 @default.
- W4224222383 hasConcept C31972630 @default.
- W4224222383 hasConcept C33923547 @default.
- W4224222383 hasConcept C41008148 @default.
- W4224222383 hasConcept C57493831 @default.
- W4224222383 hasConcept C76155785 @default.
- W4224222383 hasConcept C81363708 @default.
- W4224222383 hasConcept C94915269 @default.
- W4224222383 hasConcept C99498987 @default.
- W4224222383 hasConceptScore W4224222383C108583219 @default.
- W4224222383 hasConceptScore W4224222383C111335779 @default.
- W4224222383 hasConceptScore W4224222383C11413529 @default.
- W4224222383 hasConceptScore W4224222383C115961682 @default.
- W4224222383 hasConceptScore W4224222383C120665830 @default.
- W4224222383 hasConceptScore W4224222383C121332964 @default.
- W4224222383 hasConceptScore W4224222383C141379421 @default.
- W4224222383 hasConceptScore W4224222383C154945302 @default.
- W4224222383 hasConceptScore W4224222383C163716698 @default.
- W4224222383 hasConceptScore W4224222383C2524010 @default.
- W4224222383 hasConceptScore W4224222383C31972630 @default.
- W4224222383 hasConceptScore W4224222383C33923547 @default.
- W4224222383 hasConceptScore W4224222383C41008148 @default.
- W4224222383 hasConceptScore W4224222383C57493831 @default.
- W4224222383 hasConceptScore W4224222383C76155785 @default.
- W4224222383 hasConceptScore W4224222383C81363708 @default.
- W4224222383 hasConceptScore W4224222383C94915269 @default.
- W4224222383 hasConceptScore W4224222383C99498987 @default.
- W4224222383 hasIssue "11" @default.
- W4224222383 hasLocation W42242223831 @default.
- W4224222383 hasLocation W42242223832 @default.
- W4224222383 hasOpenAccess W4224222383 @default.
- W4224222383 hasPrimaryLocation W42242223831 @default.
- W4224222383 hasRelatedWork W2731899572 @default.
- W4224222383 hasRelatedWork W2999805992 @default.
- W4224222383 hasRelatedWork W3011074480 @default.