Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224226361> ?p ?o ?g. }
- W4224226361 endingPage "3055" @default.
- W4224226361 startingPage "3055" @default.
- W4224226361 abstract "With non-invasive and high-resolution properties, optical coherence tomography (OCT) has been widely used as a retinal imaging modality for the effective diagnosis of ophthalmic diseases. The retinal fluid is often segmented by medical experts as a pivotal biomarker to assist in the clinical diagnosis of age-related macular diseases, diabetic macular edema, and retinal vein occlusion. In recent years, the advanced machine learning methods, such as deep learning paradigms, have attracted more and more attention from academia in the retinal fluid segmentation applications. The automatic retinal fluid segmentation based on deep learning can improve the semantic segmentation accuracy and efficiency of macular change analysis, which has potential clinical implications for ophthalmic pathology detection. This article summarizes several different deep learning paradigms reported in the up-to-date literature for the retinal fluid segmentation in OCT images. The deep learning architectures include the backbone of convolutional neural network (CNN), fully convolutional network (FCN), U-shape network (U-Net), and the other hybrid computational methods. The article also provides a survey on the prevailing OCT image datasets used in recent retinal segmentation investigations. The future perspectives and some potential retinal segmentation directions are discussed in the concluding context." @default.
- W4224226361 created "2022-04-26" @default.
- W4224226361 creator A5005344676 @default.
- W4224226361 creator A5007483809 @default.
- W4224226361 creator A5009789608 @default.
- W4224226361 creator A5086105858 @default.
- W4224226361 date "2022-04-15" @default.
- W4224226361 modified "2023-09-26" @default.
- W4224226361 title "Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images" @default.
- W4224226361 cites W1901129140 @default.
- W4224226361 cites W2038566281 @default.
- W4224226361 cites W2069533927 @default.
- W4224226361 cites W2074598933 @default.
- W4224226361 cites W2142259554 @default.
- W4224226361 cites W2146842127 @default.
- W4224226361 cites W2395611524 @default.
- W4224226361 cites W2412782625 @default.
- W4224226361 cites W2418802570 @default.
- W4224226361 cites W2480705741 @default.
- W4224226361 cites W2592517646 @default.
- W4224226361 cites W2606534623 @default.
- W4224226361 cites W2738237904 @default.
- W4224226361 cites W2765684802 @default.
- W4224226361 cites W2772059204 @default.
- W4224226361 cites W2788633781 @default.
- W4224226361 cites W2792836735 @default.
- W4224226361 cites W2806398633 @default.
- W4224226361 cites W2905660188 @default.
- W4224226361 cites W2907465751 @default.
- W4224226361 cites W2917393555 @default.
- W4224226361 cites W2919070891 @default.
- W4224226361 cites W2937261546 @default.
- W4224226361 cites W2942275886 @default.
- W4224226361 cites W2942638139 @default.
- W4224226361 cites W2944774584 @default.
- W4224226361 cites W2949122205 @default.
- W4224226361 cites W2963351448 @default.
- W4224226361 cites W2963420686 @default.
- W4224226361 cites W2963881378 @default.
- W4224226361 cites W2964065611 @default.
- W4224226361 cites W2965153464 @default.
- W4224226361 cites W2976704398 @default.
- W4224226361 cites W2979392262 @default.
- W4224226361 cites W2979409059 @default.
- W4224226361 cites W3011135183 @default.
- W4224226361 cites W3013227159 @default.
- W4224226361 cites W3035516249 @default.
- W4224226361 cites W3077531713 @default.
- W4224226361 cites W3097566283 @default.
- W4224226361 cites W3097773499 @default.
- W4224226361 cites W3103010481 @default.
- W4224226361 cites W3133263599 @default.
- W4224226361 cites W3158214231 @default.
- W4224226361 cites W3163161282 @default.
- W4224226361 cites W3165736781 @default.
- W4224226361 cites W3175077653 @default.
- W4224226361 cites W3207698969 @default.
- W4224226361 cites W4205087751 @default.
- W4224226361 cites W4206342118 @default.
- W4224226361 cites W4211088096 @default.
- W4224226361 doi "https://doi.org/10.3390/s22083055" @default.
- W4224226361 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35459040" @default.
- W4224226361 hasPublicationYear "2022" @default.
- W4224226361 type Work @default.
- W4224226361 citedByCount "8" @default.
- W4224226361 countsByYear W42242263612022 @default.
- W4224226361 countsByYear W42242263612023 @default.
- W4224226361 crossrefType "journal-article" @default.
- W4224226361 hasAuthorship W4224226361A5005344676 @default.
- W4224226361 hasAuthorship W4224226361A5007483809 @default.
- W4224226361 hasAuthorship W4224226361A5009789608 @default.
- W4224226361 hasAuthorship W4224226361A5086105858 @default.
- W4224226361 hasBestOaLocation W42242263611 @default.
- W4224226361 hasConcept C108583219 @default.
- W4224226361 hasConcept C118487528 @default.
- W4224226361 hasConcept C124504099 @default.
- W4224226361 hasConcept C151730666 @default.
- W4224226361 hasConcept C154945302 @default.
- W4224226361 hasConcept C2778818243 @default.
- W4224226361 hasConcept C2779343474 @default.
- W4224226361 hasConcept C2780261187 @default.
- W4224226361 hasConcept C2780347916 @default.
- W4224226361 hasConcept C2780827179 @default.
- W4224226361 hasConcept C2908732032 @default.
- W4224226361 hasConcept C41008148 @default.
- W4224226361 hasConcept C71924100 @default.
- W4224226361 hasConcept C81363708 @default.
- W4224226361 hasConcept C86803240 @default.
- W4224226361 hasConcept C89600930 @default.
- W4224226361 hasConceptScore W4224226361C108583219 @default.
- W4224226361 hasConceptScore W4224226361C118487528 @default.
- W4224226361 hasConceptScore W4224226361C124504099 @default.
- W4224226361 hasConceptScore W4224226361C151730666 @default.
- W4224226361 hasConceptScore W4224226361C154945302 @default.
- W4224226361 hasConceptScore W4224226361C2778818243 @default.
- W4224226361 hasConceptScore W4224226361C2779343474 @default.
- W4224226361 hasConceptScore W4224226361C2780261187 @default.
- W4224226361 hasConceptScore W4224226361C2780347916 @default.