Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224228678> ?p ?o ?g. }
- W4224228678 endingPage "2308.e4" @default.
- W4224228678 startingPage "2300" @default.
- W4224228678 abstract "Cellular components are non-randomly arranged with respect to the shape and polarity of the whole cell.1Frankel J. Pattern formation: ciliate studies and models.Science. 1989; 248 (1524): 1562Google Scholar, 2Kirschner M. Gerhart J. Mitchison T. Molecular “vitalism”. Cell. 2000; 100: 79-88Scopus (158) Google Scholar, 3Harold F.M. Molecules into cells: specifying spatial architecture.Microbiol. Mol. Biol. Rev. 2005; 69: 544-564Crossref PubMed Scopus (116) Google Scholar, 4Marshall W.F. Origins of cellular geometry.BMC Biol. 2011; 9: 1-9Crossref PubMed Scopus (32) Google Scholar Patterning within cells can extend down to the level of individual proteins and mRNA.5Shulman J.M. St Johnston D. Pattern formation in single cells.Trends Cell Biol. 1999; 9: M60-M64Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar,6Das S. Vera M. Gandin V. Singer R.H. Tutucci E. Intracellular mRNA transport and localized translation.Nat. Rev. Mol. Cell Biol. 2021; 22: 483-504Crossref PubMed Scopus (26) Google Scholar But how much of the proteome is actually localized with respect to cell polarity axes? Proteomics combined with cellular fractionation7Foster L.J. de Hoog C.L. Zhang Y. Zhang Y. Xie X. Mootha V.K. Mann M. A mammalian organelle map by protein correlation profiling.Cell. 2006; 125: 187-199Abstract Full Text Full Text PDF PubMed Scopus (464) Google Scholar, 8Dunkley T.P.J. Hester S. Shadforth I.P. Runions J. Weimar T. Hanton S.L. Griffin J.L. Bessant C. Brandizzi F. Hawes C. et al.Mapping the Arabidopsis organelle proteome.Proc. Natl. Acad. Sci. USA. 2006; 103: 6518-6523Crossref PubMed Scopus (431) Google Scholar, 9Wühr M. Güttler T. Peshkin L. McAlister G.C. Sonnett M. Ishihara K. Groen A.C. Presler M. Erickson B.K. Mitchison T.J. et al.The nuclear proteome of a vertebrate.Curr. Biol. 2015; 25: 2663-2671Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 10Itzhak D.N. Tyanova S. Cox J. Borner G.H. Global, quantitative and dynamic mapping of protein subcellular localization.eLife. 2016; 5: e16950Crossref PubMed Scopus (278) Google Scholar, 11Pandya N.J. Koopmans F. Slotman J.A. Paliukhovich I. Houtsmuller A.B. Smit A.B. Li K.W. Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution.Sci. Rep. 2017; 7: 12107Crossref PubMed Scopus (26) Google Scholar has shown that most proteins localize to one or more organelles but does not tell us how many proteins have a polarized localization with respect to the large-scale polarity axes of the intact cell. Genome-wide localization studies in yeast12Kumar A. Agarwal S. Heyman J.A. Matson S. Heidtman M. Piccirillo S. Umansky L. Drawid A. Jansen R. Liu Y. et al.Subcellular localization of the yeast proteome.Genes Dev. 2002; 16: 707-719Crossref PubMed Scopus (635) Google Scholar, 13Huh W.K. Falvo J.V. Gerke L.C. Carroll A.S. Howson R.W. Weissman J.S. O'Shea E.K. Global analysis of protein localization in budding yeast.Nature. 2003; 425: 686-691Crossref PubMed Scopus (3234) Google Scholar, 14Narayanaswamy R. Moradi E.K. Niu W. Hart G.T. Davis M. McGary K.L. Ellington A.D. Marcotte E.M. Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast.J. Proteome Res. 2009; 8: 6-19Crossref PubMed Scopus (25) Google Scholar, 15Chong Y.T. Koh J.L. Friesen H. Duffy S.K. Cox M.J. Moses A. Moffat J. Boone C. Andrews B.J. Yeast proteome dynamics from single cell imaging and automated analysis.Cell. 2015; 161: 1413-1424Abstract Full Text Full Text PDF PubMed Scopus (175) Google Scholar found that only a few percent of proteins have a localized position relative to the cell polarity axis defined by sites of polarized cell growth. Here, we describe an approach for analyzing protein distribution within a cell with a visibly obvious global patterning—the giant ciliate Stentor coeruleus.16Tartar V. The Biology of Stentor. Pergamon Press, 1961Crossref Google Scholar,17Marshall W.F. Regeneration in Stentor coeruleus.Front. Cell Dev. Biol. 2021; 9: 753625Crossref PubMed Scopus (3) Google Scholar Ciliates, including Stentor, have highly polarized cell shapes with visible surface patterning.1Frankel J. Pattern formation: ciliate studies and models.Science. 1989; 248 (1524): 1562Google Scholar,18Aufderheide K.J. Frankel J. Williams N.E. Formation and positioning of surface-related structures in protozoa.Microbiol. Rev. 1980; 44: 252-302Crossref PubMed Google Scholar A Stentor cell is roughly 2 mm long, allowing a “proteomic dissection” in which microsurgery is used to separate cellular fragments along the anterior-posterior axis, followed by comparative proteomic analysis. In our analysis, 25% of the proteome, including signaling proteins, centrin/SFI proteins, and GAS2 orthologs, shows a polarized location along the cell’s anterior-posterior axis. We conclude that a large proportion of all proteins are polarized with respect to global cell polarity axes and that proteomic dissection provides a simple and effective approach for spatial proteomics." @default.
- W4224228678 created "2022-04-26" @default.
- W4224228678 creator A5003222186 @default.
- W4224228678 creator A5005489574 @default.
- W4224228678 creator A5010734294 @default.
- W4224228678 creator A5013297039 @default.
- W4224228678 creator A5016629260 @default.
- W4224228678 creator A5018277717 @default.
- W4224228678 creator A5018335448 @default.
- W4224228678 creator A5032834920 @default.
- W4224228678 creator A5048233009 @default.
- W4224228678 creator A5048796260 @default.
- W4224228678 creator A5065662797 @default.
- W4224228678 creator A5074168686 @default.
- W4224228678 date "2022-05-01" @default.
- W4224228678 modified "2023-09-25" @default.
- W4224228678 title "Determining protein polarization proteome-wide using physical dissection of individual Stentor coeruleus cells" @default.
- W4224228678 cites W1859662172 @default.
- W4224228678 cites W1971357026 @default.
- W4224228678 cites W1975921528 @default.
- W4224228678 cites W1978459262 @default.
- W4224228678 cites W1986062719 @default.
- W4224228678 cites W1986191395 @default.
- W4224228678 cites W1986656413 @default.
- W4224228678 cites W2001568414 @default.
- W4224228678 cites W2025550674 @default.
- W4224228678 cites W2028673251 @default.
- W4224228678 cites W2031910372 @default.
- W4224228678 cites W2032303532 @default.
- W4224228678 cites W2097847369 @default.
- W4224228678 cites W2101347991 @default.
- W4224228678 cites W2119837695 @default.
- W4224228678 cites W2123492543 @default.
- W4224228678 cites W2131271579 @default.
- W4224228678 cites W2132744522 @default.
- W4224228678 cites W2137335580 @default.
- W4224228678 cites W2152239989 @default.
- W4224228678 cites W2156355974 @default.
- W4224228678 cites W2157654873 @default.
- W4224228678 cites W2169805130 @default.
- W4224228678 cites W2170551349 @default.
- W4224228678 cites W2170665961 @default.
- W4224228678 cites W2184053832 @default.
- W4224228678 cites W2229366407 @default.
- W4224228678 cites W2298090011 @default.
- W4224228678 cites W2323326409 @default.
- W4224228678 cites W2419532700 @default.
- W4224228678 cites W2463195069 @default.
- W4224228678 cites W2561919645 @default.
- W4224228678 cites W2587530849 @default.
- W4224228678 cites W2613629789 @default.
- W4224228678 cites W2678826551 @default.
- W4224228678 cites W2752331764 @default.
- W4224228678 cites W2756067497 @default.
- W4224228678 cites W2761663005 @default.
- W4224228678 cites W2795654446 @default.
- W4224228678 cites W2808387716 @default.
- W4224228678 cites W2909223667 @default.
- W4224228678 cites W2946836651 @default.
- W4224228678 cites W2955043776 @default.
- W4224228678 cites W2968984744 @default.
- W4224228678 cites W2985366299 @default.
- W4224228678 cites W3009818459 @default.
- W4224228678 cites W3012963353 @default.
- W4224228678 cites W3094405476 @default.
- W4224228678 cites W3152172570 @default.
- W4224228678 cites W3157013372 @default.
- W4224228678 cites W3166627873 @default.
- W4224228678 cites W3193425870 @default.
- W4224228678 cites W3202638116 @default.
- W4224228678 cites W4225725372 @default.
- W4224228678 cites W4241743907 @default.
- W4224228678 doi "https://doi.org/10.1016/j.cub.2022.03.078" @default.
- W4224228678 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35447087" @default.
- W4224228678 hasPublicationYear "2022" @default.
- W4224228678 type Work @default.
- W4224228678 citedByCount "3" @default.
- W4224228678 countsByYear W42242286782021 @default.
- W4224228678 countsByYear W42242286782022 @default.
- W4224228678 countsByYear W42242286782023 @default.
- W4224228678 crossrefType "journal-article" @default.
- W4224228678 hasAuthorship W4224228678A5003222186 @default.
- W4224228678 hasAuthorship W4224228678A5005489574 @default.
- W4224228678 hasAuthorship W4224228678A5010734294 @default.
- W4224228678 hasAuthorship W4224228678A5013297039 @default.
- W4224228678 hasAuthorship W4224228678A5016629260 @default.
- W4224228678 hasAuthorship W4224228678A5018277717 @default.
- W4224228678 hasAuthorship W4224228678A5018335448 @default.
- W4224228678 hasAuthorship W4224228678A5032834920 @default.
- W4224228678 hasAuthorship W4224228678A5048233009 @default.
- W4224228678 hasAuthorship W4224228678A5048796260 @default.
- W4224228678 hasAuthorship W4224228678A5065662797 @default.
- W4224228678 hasAuthorship W4224228678A5074168686 @default.
- W4224228678 hasBestOaLocation W42242286781 @default.
- W4224228678 hasConcept C104397665 @default.
- W4224228678 hasConcept C168240541 @default.
- W4224228678 hasConcept C2779473830 @default.
- W4224228678 hasConcept C55493867 @default.