Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224229372> ?p ?o ?g. }
- W4224229372 endingPage "3157" @default.
- W4224229372 startingPage "3157" @default.
- W4224229372 abstract "The classification of individual tree species (ITS) is beneficial to forest management and protection. Previous studies in ITS classification that are primarily based on airborne LiDAR and aerial photographs have achieved the highest classification accuracies. However, because of the complex and high cost of data acquisition, it is difficult to apply ITS classification in the classification of large-area forests. High-resolution, satellite remote sensing data have abundant sources and significant application potential in ITS classification. Based on Worldview-3 and Google Earth images, convolutional neural network (CNN) models were employed to improve the classification accuracy of ITS by fully utilizing the feature information contained in different seasonal images. Among the three CNN models, DenseNet yielded better performances than ResNet and GoogLeNet. It offered an OA of 75.1% for seven tree species using only the WorldView-3 image and an OA of 78.1% using the combinations of WorldView-3 and autumn Google Earth images. The results indicated that Google Earth images with suitable temporal detail could be employed as auxiliary data to improve the classification accuracy." @default.
- W4224229372 created "2022-04-26" @default.
- W4224229372 creator A5013736647 @default.
- W4224229372 creator A5047809807 @default.
- W4224229372 creator A5075990958 @default.
- W4224229372 creator A5087614940 @default.
- W4224229372 date "2022-04-20" @default.
- W4224229372 modified "2023-10-03" @default.
- W4224229372 title "Individual Tree Species Classification Based on Convolutional Neural Networks and Multitemporal High-Resolution Remote Sensing Images" @default.
- W4224229372 cites W1683156614 @default.
- W4224229372 cites W1968590658 @default.
- W4224229372 cites W1994434338 @default.
- W4224229372 cites W1995612336 @default.
- W4224229372 cites W2020326148 @default.
- W4224229372 cites W2036061791 @default.
- W4224229372 cites W2059217921 @default.
- W4224229372 cites W2094735994 @default.
- W4224229372 cites W2147243569 @default.
- W4224229372 cites W2159558001 @default.
- W4224229372 cites W2261059368 @default.
- W4224229372 cites W2316487938 @default.
- W4224229372 cites W2405365025 @default.
- W4224229372 cites W2416708566 @default.
- W4224229372 cites W2482464033 @default.
- W4224229372 cites W2587185589 @default.
- W4224229372 cites W2591466624 @default.
- W4224229372 cites W2594474574 @default.
- W4224229372 cites W2604870469 @default.
- W4224229372 cites W2619590250 @default.
- W4224229372 cites W2743601682 @default.
- W4224229372 cites W2765366036 @default.
- W4224229372 cites W2774589172 @default.
- W4224229372 cites W2783802546 @default.
- W4224229372 cites W2791598887 @default.
- W4224229372 cites W2793927960 @default.
- W4224229372 cites W2884119812 @default.
- W4224229372 cites W2886835193 @default.
- W4224229372 cites W2896206172 @default.
- W4224229372 cites W2911261286 @default.
- W4224229372 cites W2921401402 @default.
- W4224229372 cites W2922774970 @default.
- W4224229372 cites W2929935266 @default.
- W4224229372 cites W2946587022 @default.
- W4224229372 cites W2950604226 @default.
- W4224229372 cites W2964074194 @default.
- W4224229372 cites W2970113456 @default.
- W4224229372 cites W2991424587 @default.
- W4224229372 cites W3005101149 @default.
- W4224229372 cites W3011052870 @default.
- W4224229372 cites W3013471216 @default.
- W4224229372 cites W3013515824 @default.
- W4224229372 cites W3014120959 @default.
- W4224229372 cites W3021060199 @default.
- W4224229372 cites W3028034508 @default.
- W4224229372 cites W3028190301 @default.
- W4224229372 cites W3036016333 @default.
- W4224229372 cites W3039498040 @default.
- W4224229372 cites W3043310823 @default.
- W4224229372 cites W3044421684 @default.
- W4224229372 cites W3046083520 @default.
- W4224229372 cites W3047203265 @default.
- W4224229372 cites W3110459943 @default.
- W4224229372 cites W3153652603 @default.
- W4224229372 cites W3170927957 @default.
- W4224229372 cites W4200272550 @default.
- W4224229372 doi "https://doi.org/10.3390/s22093157" @default.
- W4224229372 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35590847" @default.
- W4224229372 hasPublicationYear "2022" @default.
- W4224229372 type Work @default.
- W4224229372 citedByCount "7" @default.
- W4224229372 countsByYear W42242293722022 @default.
- W4224229372 countsByYear W42242293722023 @default.
- W4224229372 crossrefType "journal-article" @default.
- W4224229372 hasAuthorship W4224229372A5013736647 @default.
- W4224229372 hasAuthorship W4224229372A5047809807 @default.
- W4224229372 hasAuthorship W4224229372A5075990958 @default.
- W4224229372 hasAuthorship W4224229372A5087614940 @default.
- W4224229372 hasBestOaLocation W42242293721 @default.
- W4224229372 hasConcept C113174947 @default.
- W4224229372 hasConcept C115961682 @default.
- W4224229372 hasConcept C127413603 @default.
- W4224229372 hasConcept C134306372 @default.
- W4224229372 hasConcept C138885662 @default.
- W4224229372 hasConcept C146978453 @default.
- W4224229372 hasConcept C153180895 @default.
- W4224229372 hasConcept C154945302 @default.
- W4224229372 hasConcept C169258074 @default.
- W4224229372 hasConcept C19269812 @default.
- W4224229372 hasConcept C205649164 @default.
- W4224229372 hasConcept C2776401178 @default.
- W4224229372 hasConcept C3020199158 @default.
- W4224229372 hasConcept C33923547 @default.
- W4224229372 hasConcept C39399123 @default.
- W4224229372 hasConcept C41008148 @default.
- W4224229372 hasConcept C41895202 @default.
- W4224229372 hasConcept C52622490 @default.
- W4224229372 hasConcept C62649853 @default.
- W4224229372 hasConcept C75294576 @default.