Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224231830> ?p ?o ?g. }
- W4224231830 abstract "Once doped away from their parent Mott insulating state, the hole-doped cuprates enter into many varied and exotic phases. The onset temperature of each phase is then plotted versus $p$---the number of doped holes per copper atom---to form a representative phase diagram. Apart from differences in the absolute temperature scales among the various families, the resultant phase diagrams are strikingly similar. In particular, the $p$ values corresponding to optimal doping (${p}^{mathrm{opt}}ensuremath{sim}0.16$) and to the end of the pseudogap phase $({p}^{*}ensuremath{sim}0.19--0.20)$ are essentially the same for all cuprate families bar one: the single-layer Bi-based cuprate ${mathrm{Bi}}_{2+zensuremath{-}y}{mathrm{Pb}}_{y}{mathrm{Sr}}_{2ensuremath{-}xensuremath{-}z}{mathrm{La}}_{x}{mathrm{CuO}}_{6+ensuremath{delta}}$ (Bi2201). This anomaly arises partly due to the complex stoichiometry of this material and also to the different $p$ values inferred from disparate (e.g., bulk or surface) measurements performed on samples with comparable superconducting transition temperatures ${T}_{c}$. Here, by combining measurements of the in-plane resistivity in zero and high magnetic fields with angle-resolved photoemission spectroscopy studies in the superconducting and normal state, we argue that the phase diagram of Bi2201 may in fact be similar to that realized in other families. This study therefore brings Bi2201 into the fold and supports the notion of universality of ${p}^{mathrm{opt}}$ and ${p}^{*}$ in all hole-doped cuprates." @default.
- W4224231830 created "2022-04-26" @default.
- W4224231830 creator A5019192929 @default.
- W4224231830 creator A5019468623 @default.
- W4224231830 creator A5022046456 @default.
- W4224231830 creator A5023463159 @default.
- W4224231830 creator A5023846105 @default.
- W4224231830 creator A5025265991 @default.
- W4224231830 creator A5036588860 @default.
- W4224231830 creator A5038181784 @default.
- W4224231830 creator A5040030570 @default.
- W4224231830 creator A5045583543 @default.
- W4224231830 creator A5051051083 @default.
- W4224231830 creator A5055674281 @default.
- W4224231830 creator A5058479219 @default.
- W4224231830 creator A5062993893 @default.
- W4224231830 creator A5069007981 @default.
- W4224231830 creator A5078751664 @default.
- W4224231830 creator A5082691443 @default.
- W4224231830 creator A5083330656 @default.
- W4224231830 date "2022-04-20" @default.
- W4224231830 modified "2023-10-10" @default.
- W4224231830 title "Superconducting dome and pseudogap endpoint in Bi2201" @default.
- W4224231830 cites W123691017 @default.
- W4224231830 cites W1481313264 @default.
- W4224231830 cites W1510981163 @default.
- W4224231830 cites W1560458495 @default.
- W4224231830 cites W1562345280 @default.
- W4224231830 cites W1569439071 @default.
- W4224231830 cites W1595584690 @default.
- W4224231830 cites W1602841102 @default.
- W4224231830 cites W1789809277 @default.
- W4224231830 cites W1820722395 @default.
- W4224231830 cites W1915841132 @default.
- W4224231830 cites W1965233268 @default.
- W4224231830 cites W1966920651 @default.
- W4224231830 cites W1968687396 @default.
- W4224231830 cites W1973636316 @default.
- W4224231830 cites W1992703024 @default.
- W4224231830 cites W2001293637 @default.
- W4224231830 cites W2007156964 @default.
- W4224231830 cites W2011666906 @default.
- W4224231830 cites W2015406102 @default.
- W4224231830 cites W2020742003 @default.
- W4224231830 cites W2022620806 @default.
- W4224231830 cites W2026939192 @default.
- W4224231830 cites W2028078708 @default.
- W4224231830 cites W2029309923 @default.
- W4224231830 cites W2035357580 @default.
- W4224231830 cites W2044707189 @default.
- W4224231830 cites W2047675913 @default.
- W4224231830 cites W2051461837 @default.
- W4224231830 cites W2058309377 @default.
- W4224231830 cites W2062722709 @default.
- W4224231830 cites W2075555139 @default.
- W4224231830 cites W2083459479 @default.
- W4224231830 cites W2086134746 @default.
- W4224231830 cites W2098297220 @default.
- W4224231830 cites W2106400232 @default.
- W4224231830 cites W2121620900 @default.
- W4224231830 cites W2129079754 @default.
- W4224231830 cites W2143045389 @default.
- W4224231830 cites W2172725033 @default.
- W4224231830 cites W2175930712 @default.
- W4224231830 cites W2247852404 @default.
- W4224231830 cites W2315585359 @default.
- W4224231830 cites W2317575847 @default.
- W4224231830 cites W2331802451 @default.
- W4224231830 cites W2488672207 @default.
- W4224231830 cites W2610307158 @default.
- W4224231830 cites W2614487885 @default.
- W4224231830 cites W2792666864 @default.
- W4224231830 cites W2798574024 @default.
- W4224231830 cites W2902614630 @default.
- W4224231830 cites W2921113344 @default.
- W4224231830 cites W2965206246 @default.
- W4224231830 cites W2980976498 @default.
- W4224231830 cites W2990499363 @default.
- W4224231830 cites W3015098601 @default.
- W4224231830 cites W3021963743 @default.
- W4224231830 cites W3103434309 @default.
- W4224231830 cites W3116335960 @default.
- W4224231830 cites W3123088055 @default.
- W4224231830 cites W3135214720 @default.
- W4224231830 cites W3177433194 @default.
- W4224231830 cites W4310558047 @default.
- W4224231830 doi "https://doi.org/10.1103/physrevmaterials.6.044804" @default.
- W4224231830 hasPublicationYear "2022" @default.
- W4224231830 type Work @default.
- W4224231830 citedByCount "1" @default.
- W4224231830 countsByYear W42242318302022 @default.
- W4224231830 crossrefType "journal-article" @default.
- W4224231830 hasAuthorship W4224231830A5019192929 @default.
- W4224231830 hasAuthorship W4224231830A5019468623 @default.
- W4224231830 hasAuthorship W4224231830A5022046456 @default.
- W4224231830 hasAuthorship W4224231830A5023463159 @default.
- W4224231830 hasAuthorship W4224231830A5023846105 @default.
- W4224231830 hasAuthorship W4224231830A5025265991 @default.
- W4224231830 hasAuthorship W4224231830A5036588860 @default.
- W4224231830 hasAuthorship W4224231830A5038181784 @default.