Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224236241> ?p ?o ?g. }
- W4224236241 endingPage "1249" @default.
- W4224236241 startingPage "1249" @default.
- W4224236241 abstract "The release of mercury into the environment has adverse effects on humans and aquatic species, even at very low concentrations. Pyrene and its derivatives have interesting fluorescence properties that can be utilized for mercury (Hg2+) ion sensing. Herein, we reported the highly selective pyrene-functionalized silica nanoparticles (Pyr-NH@SiO2 NPs) for chemosensing mercury (Hg2+) ions in a seawater sample. The Pyr-NH@SiO2 NPs were synthesized via a two-step protocol. First, a modified Stöber method was adopted to generate amino-functionalized silica nanoparticles (NH2@SiO2 NPs). Second, 1-pyrenecarboxylic acid was coupled to NH2@SiO2 NPs using a peptide coupling reaction. As-synthesized NH2@SiO2 NPs and Pyr-NH@SiO2 NPs were thoroughly investigated by 1H-NMR, FTIR, XRD, FESEM, EDS, TGA, and BET surface area analysis. The fluorescent properties were examined in deionized water under UV-light illumination. Finally, the developed Pyr-NH@SiO2 NPs were tested as a chemosensor for Hg2+ ions detection in a broad concentration range (0-50 ppm) via photoluminescence (PL) spectroscopy. The chemosensor can selectively detect Hg2+ ions in the presence of ubiquitous ions (Na+, K+, Ca2+, Mg2+, Ba2+, Ag+, and seawater samples). The quenching of fluorescence properties with Hg2+ ions (LOD: 10 ppb) indicates that Pyr-NH@SiO2 NPs can be effectively utilized as a promising chemosensor for mercury ion detection in seawater environments." @default.
- W4224236241 created "2022-04-26" @default.
- W4224236241 creator A5036334797 @default.
- W4224236241 creator A5038659622 @default.
- W4224236241 creator A5073043057 @default.
- W4224236241 creator A5090073996 @default.
- W4224236241 date "2022-04-07" @default.
- W4224236241 modified "2023-10-18" @default.
- W4224236241 title "Cost-Effective and Selective Fluorescent Chemosensor (Pyr-NH@SiO2 NPs) for Mercury Detection in Seawater" @default.
- W4224236241 cites W1772350833 @default.
- W4224236241 cites W1965799323 @default.
- W4224236241 cites W1974930894 @default.
- W4224236241 cites W1978805848 @default.
- W4224236241 cites W1980451925 @default.
- W4224236241 cites W1982045410 @default.
- W4224236241 cites W1984483871 @default.
- W4224236241 cites W1986401867 @default.
- W4224236241 cites W1988412162 @default.
- W4224236241 cites W1995141548 @default.
- W4224236241 cites W1996091789 @default.
- W4224236241 cites W1999645976 @default.
- W4224236241 cites W2004906357 @default.
- W4224236241 cites W2007905872 @default.
- W4224236241 cites W2010473784 @default.
- W4224236241 cites W2014466502 @default.
- W4224236241 cites W2017992802 @default.
- W4224236241 cites W2024703652 @default.
- W4224236241 cites W2028206780 @default.
- W4224236241 cites W2041525509 @default.
- W4224236241 cites W2079412869 @default.
- W4224236241 cites W2079498434 @default.
- W4224236241 cites W2083270718 @default.
- W4224236241 cites W2083430198 @default.
- W4224236241 cites W2089124524 @default.
- W4224236241 cites W2093844191 @default.
- W4224236241 cites W2103597921 @default.
- W4224236241 cites W2104231717 @default.
- W4224236241 cites W2110569979 @default.
- W4224236241 cites W2117611627 @default.
- W4224236241 cites W2120115158 @default.
- W4224236241 cites W2140559986 @default.
- W4224236241 cites W2157243642 @default.
- W4224236241 cites W2332595896 @default.
- W4224236241 cites W2516048327 @default.
- W4224236241 cites W2555052349 @default.
- W4224236241 cites W2588994587 @default.
- W4224236241 cites W2735338043 @default.
- W4224236241 cites W2810524613 @default.
- W4224236241 cites W2884345433 @default.
- W4224236241 cites W2886599878 @default.
- W4224236241 cites W2895205254 @default.
- W4224236241 cites W2898814802 @default.
- W4224236241 cites W2901630047 @default.
- W4224236241 cites W2926633651 @default.
- W4224236241 cites W2957851360 @default.
- W4224236241 cites W2985331770 @default.
- W4224236241 cites W3024029284 @default.
- W4224236241 cites W3038054367 @default.
- W4224236241 cites W3087291795 @default.
- W4224236241 cites W3094782247 @default.
- W4224236241 cites W3099200671 @default.
- W4224236241 cites W3102264365 @default.
- W4224236241 cites W3119982603 @default.
- W4224236241 cites W3149056375 @default.
- W4224236241 cites W3178225233 @default.
- W4224236241 cites W3205065038 @default.
- W4224236241 cites W4206586857 @default.
- W4224236241 cites W4210733033 @default.
- W4224236241 cites W4214570449 @default.
- W4224236241 cites W4244727041 @default.
- W4224236241 cites W4318751231 @default.
- W4224236241 cites W2997962751 @default.
- W4224236241 doi "https://doi.org/10.3390/nano12081249" @default.
- W4224236241 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35457957" @default.
- W4224236241 hasPublicationYear "2022" @default.
- W4224236241 type Work @default.
- W4224236241 citedByCount "3" @default.
- W4224236241 countsByYear W42242362412023 @default.
- W4224236241 crossrefType "journal-article" @default.
- W4224236241 hasAuthorship W4224236241A5036334797 @default.
- W4224236241 hasAuthorship W4224236241A5038659622 @default.
- W4224236241 hasAuthorship W4224236241A5073043057 @default.
- W4224236241 hasAuthorship W4224236241A5090073996 @default.
- W4224236241 hasBestOaLocation W42242362411 @default.
- W4224236241 hasConcept C111368507 @default.
- W4224236241 hasConcept C121332964 @default.
- W4224236241 hasConcept C121745418 @default.
- W4224236241 hasConcept C127313418 @default.
- W4224236241 hasConcept C127413603 @default.
- W4224236241 hasConcept C13965031 @default.
- W4224236241 hasConcept C145148216 @default.
- W4224236241 hasConcept C155672457 @default.
- W4224236241 hasConcept C160892712 @default.
- W4224236241 hasConcept C171250308 @default.
- W4224236241 hasConcept C178790620 @default.
- W4224236241 hasConcept C179104552 @default.
- W4224236241 hasConcept C185592680 @default.
- W4224236241 hasConcept C192562407 @default.