Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224236384> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4224236384 endingPage "125" @default.
- W4224236384 startingPage "115" @default.
- W4224236384 abstract "Due to outstanding performance in cheminformatics, machine learning algorithms have been increasingly used to mine molecular properties and biomedical big data. The performance of machine learning models is known to critically depend on the selection of the hyper-parameter configuration. However, many studies either explored the optimal hyper-parameters per the grid searching method or employed arbitrarily selected hyper-parameters, which can easily lead to achieving a suboptimal hyper-parameter configuration. In this study, Hyperopt library embedding with the Bayesian optimization is employed to find optimal hyper-parameters for different machine learning algorithms. Six drug discovery datasets, including solubility, probe-likeness, hERG, Chagas disease, tuberculosis, and malaria, are used to compare different machine learning algorithms with ECFP6 fingerprints. This contribution aims to evaluate whether the Bernoulli Naïve Bayes, logistic linear regression, AdaBoost decision tree, random forest, support vector machine, and deep neural networks algorithms with optimized hyper-parameters can offer any improvement in testing as compared with the referenced models assessed by an array of metrics including AUC, F1-score, Cohen’s kappa, Matthews correlation coefficient, recall, precision, and accuracy. Based on the rank normalized score approach, the Hyperopt models achieve better or comparable performance on 33 out 36 models for different drug discovery datasets, showing significant improvement achieved by employing the Hyperopt library. The open-source code of all the 6 machine learning frameworks employed in the Hyperopt python package is provided to make this approach accessible to more scientists, who are not familiar with writing code." @default.
- W4224236384 created "2022-04-26" @default.
- W4224236384 creator A5013863365 @default.
- W4224236384 creator A5065243448 @default.
- W4224236384 creator A5071672663 @default.
- W4224236384 date "2022-12-01" @default.
- W4224236384 modified "2023-09-26" @default.
- W4224236384 title "Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library" @default.
- W4224236384 cites W1437335841 @default.
- W4224236384 cites W1978253274 @default.
- W4224236384 cites W1980801609 @default.
- W4224236384 cites W1988037271 @default.
- W4224236384 cites W2000480518 @default.
- W4224236384 cites W2031449719 @default.
- W4224236384 cites W2053154970 @default.
- W4224236384 cites W2066655960 @default.
- W4224236384 cites W2099646268 @default.
- W4224236384 cites W2109553965 @default.
- W4224236384 cites W2129018774 @default.
- W4224236384 cites W2166107799 @default.
- W4224236384 cites W2171830166 @default.
- W4224236384 cites W2192203593 @default.
- W4224236384 cites W2213443318 @default.
- W4224236384 cites W2332797094 @default.
- W4224236384 cites W2586297576 @default.
- W4224236384 cites W2731161895 @default.
- W4224236384 cites W2766761250 @default.
- W4224236384 cites W2886544065 @default.
- W4224236384 cites W2911932738 @default.
- W4224236384 cites W2940242941 @default.
- W4224236384 cites W3007309629 @default.
- W4224236384 cites W3093652827 @default.
- W4224236384 doi "https://doi.org/10.1016/j.cjche.2022.04.004" @default.
- W4224236384 hasPublicationYear "2022" @default.
- W4224236384 type Work @default.
- W4224236384 citedByCount "3" @default.
- W4224236384 countsByYear W42242363842023 @default.
- W4224236384 crossrefType "journal-article" @default.
- W4224236384 hasAuthorship W4224236384A5013863365 @default.
- W4224236384 hasAuthorship W4224236384A5065243448 @default.
- W4224236384 hasAuthorship W4224236384A5071672663 @default.
- W4224236384 hasConcept C10485038 @default.
- W4224236384 hasConcept C111919701 @default.
- W4224236384 hasConcept C11413529 @default.
- W4224236384 hasConcept C119857082 @default.
- W4224236384 hasConcept C12267149 @default.
- W4224236384 hasConcept C124101348 @default.
- W4224236384 hasConcept C154945302 @default.
- W4224236384 hasConcept C169258074 @default.
- W4224236384 hasConcept C41008148 @default.
- W4224236384 hasConcept C50644808 @default.
- W4224236384 hasConcept C519991488 @default.
- W4224236384 hasConcept C52001869 @default.
- W4224236384 hasConceptScore W4224236384C10485038 @default.
- W4224236384 hasConceptScore W4224236384C111919701 @default.
- W4224236384 hasConceptScore W4224236384C11413529 @default.
- W4224236384 hasConceptScore W4224236384C119857082 @default.
- W4224236384 hasConceptScore W4224236384C12267149 @default.
- W4224236384 hasConceptScore W4224236384C124101348 @default.
- W4224236384 hasConceptScore W4224236384C154945302 @default.
- W4224236384 hasConceptScore W4224236384C169258074 @default.
- W4224236384 hasConceptScore W4224236384C41008148 @default.
- W4224236384 hasConceptScore W4224236384C50644808 @default.
- W4224236384 hasConceptScore W4224236384C519991488 @default.
- W4224236384 hasConceptScore W4224236384C52001869 @default.
- W4224236384 hasLocation W42242363841 @default.
- W4224236384 hasOpenAccess W4224236384 @default.
- W4224236384 hasPrimaryLocation W42242363841 @default.
- W4224236384 hasRelatedWork W2595988085 @default.
- W4224236384 hasRelatedWork W2979979539 @default.
- W4224236384 hasRelatedWork W2985924212 @default.
- W4224236384 hasRelatedWork W3127425528 @default.
- W4224236384 hasRelatedWork W3143658565 @default.
- W4224236384 hasRelatedWork W3204641204 @default.
- W4224236384 hasRelatedWork W4285225238 @default.
- W4224236384 hasRelatedWork W4311106074 @default.
- W4224236384 hasRelatedWork W4320494184 @default.
- W4224236384 hasRelatedWork W4377964522 @default.
- W4224236384 hasVolume "52" @default.
- W4224236384 isParatext "false" @default.
- W4224236384 isRetracted "false" @default.
- W4224236384 workType "article" @default.