Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224238051> ?p ?o ?g. }
- W4224238051 endingPage "113045" @default.
- W4224238051 startingPage "113045" @default.
- W4224238051 abstract "For better use of well-performed water quality parameter estimation models and the comprehensive use of multi-source remote sensing data, hyperspectral reconstruction is urgently needed in the remote sensing of optically complex inland waters. In this study, we proposed a bio-optical–based hyperspectral reconstruction (BBHR) algorithm to generate hyperspectral above-surface remote-sensing reflectance (Rrs) data ranging in wavelength from 400 to 800 nm. One core advantage of the BBHR method is its in situ data independency, which theoretically renders the algorithm universal. The other advantage is its ability to reconstruct hyperspectral Rrs for the 400–800 nm spectral range, which facilitates the construction of more high accuracy chlorophyll-a concentration (Cchla) estimation models for optically complex waters. The reconstruction was tested by employing six widely used multispectral sensors: the Medium Resolution Imaging Spectrometer, (MERIS), Sentinel-3 Ocean and Land Color Instrument (S3 OLCI), Sentinel-2 Multispectral Instrument (S2 MSI), Geostationary Ocean Color Imager (GOCI), Visible Infrared Imaging Radiometer Suite (VIIRS), and Moderate Resolution Imaging Spectroradiometer (MODIS). The model performance was validated by using a ASD FieldSpec spectroradiometer-measured hyperspectral dataset containing 1396 samples and a satellite-in-situ match-up dataset with 66 samples. The results show that the proposed BBHR method exhibits satisfactory performance. The average mean absolute percentage error (MAPE), root mean square error (RMSE), R2 and bias indices of the BBHR-reconstructed Rrs over all spectral bands of the six multispectral sensors were 3.27%, 8.86 × 10−4 sr−1, 0.98, and − 6.53 × 10−5 sr−1, respectively. In the field Cchla estimation experiment that contained 391 samples (mean Cchla is 25.42 ± 16.37 μg/L), the BBHR algorithm improved the MAPE and RMSE indices of multispectral data from 0.47 and 12.80 μg/L to 0.42 and 10.16 μg/L, respectively. For the satellite image match-up dataset (66 samples), the BBHR method decreased the MAPE and RMSE indices of multispectral images from 0.51 and 12.94 μg/L to 0.32 and 8.01 μg/L, respectively. The proposed algorithm outperformed the other two high-accuracy models in terms of spectral fidelity and Cchla estimation. In addition, the BBHR method shows great potential for the multi-source monitoring of inland water bodies. This could improve the accuracy and robustness of the reconstruction when semi-synchronized multi-source data are input and increase the consistency of multi-source data when non-synchronized multi-source data are provided. Our results revealed that BBHR is a trustworthy algorithm that offers hyperspectral Rrs data and facilitates the remote monitoring of turbid inland waterbodies." @default.
- W4224238051 created "2022-04-26" @default.
- W4224238051 creator A5017732773 @default.
- W4224238051 creator A5019305439 @default.
- W4224238051 creator A5037749622 @default.
- W4224238051 creator A5045687577 @default.
- W4224238051 creator A5047004727 @default.
- W4224238051 creator A5049242658 @default.
- W4224238051 creator A5054563725 @default.
- W4224238051 creator A5068421148 @default.
- W4224238051 creator A5069050975 @default.
- W4224238051 creator A5080414705 @default.
- W4224238051 date "2022-07-01" @default.
- W4224238051 modified "2023-10-17" @default.
- W4224238051 title "Hyperspectral reconstruction method for optically complex inland waters based on bio-optical model and sparse representing" @default.
- W4224238051 cites W1518146321 @default.
- W4224238051 cites W1827197291 @default.
- W4224238051 cites W1862739340 @default.
- W4224238051 cites W1866849768 @default.
- W4224238051 cites W1949216084 @default.
- W4224238051 cites W1964669656 @default.
- W4224238051 cites W1966408116 @default.
- W4224238051 cites W1967906870 @default.
- W4224238051 cites W1972514106 @default.
- W4224238051 cites W1977923175 @default.
- W4224238051 cites W1979315276 @default.
- W4224238051 cites W1982956952 @default.
- W4224238051 cites W1982965630 @default.
- W4224238051 cites W1984514811 @default.
- W4224238051 cites W1988886499 @default.
- W4224238051 cites W1989969177 @default.
- W4224238051 cites W1993178254 @default.
- W4224238051 cites W1994689062 @default.
- W4224238051 cites W1995811252 @default.
- W4224238051 cites W1998860970 @default.
- W4224238051 cites W2004311462 @default.
- W4224238051 cites W2005118499 @default.
- W4224238051 cites W2009751365 @default.
- W4224238051 cites W2011838059 @default.
- W4224238051 cites W2012477883 @default.
- W4224238051 cites W2013305213 @default.
- W4224238051 cites W2013785526 @default.
- W4224238051 cites W2020992369 @default.
- W4224238051 cites W2026440158 @default.
- W4224238051 cites W2040107803 @default.
- W4224238051 cites W2040621183 @default.
- W4224238051 cites W2040760385 @default.
- W4224238051 cites W2042040410 @default.
- W4224238051 cites W2043320554 @default.
- W4224238051 cites W2053031841 @default.
- W4224238051 cites W2056305273 @default.
- W4224238051 cites W2058350161 @default.
- W4224238051 cites W2058900347 @default.
- W4224238051 cites W2060780420 @default.
- W4224238051 cites W2065123295 @default.
- W4224238051 cites W2071190035 @default.
- W4224238051 cites W2074789461 @default.
- W4224238051 cites W2075207275 @default.
- W4224238051 cites W2076392573 @default.
- W4224238051 cites W2076719954 @default.
- W4224238051 cites W2077973040 @default.
- W4224238051 cites W2082714424 @default.
- W4224238051 cites W2083825310 @default.
- W4224238051 cites W2085203468 @default.
- W4224238051 cites W2095473880 @default.
- W4224238051 cites W2100349144 @default.
- W4224238051 cites W2102380305 @default.
- W4224238051 cites W2106081375 @default.
- W4224238051 cites W2114164280 @default.
- W4224238051 cites W2115212594 @default.
- W4224238051 cites W2121058967 @default.
- W4224238051 cites W2126610649 @default.
- W4224238051 cites W2128827633 @default.
- W4224238051 cites W2129812935 @default.
- W4224238051 cites W2129932080 @default.
- W4224238051 cites W2129953395 @default.
- W4224238051 cites W2130817706 @default.
- W4224238051 cites W2130951438 @default.
- W4224238051 cites W2134138418 @default.
- W4224238051 cites W2136903247 @default.
- W4224238051 cites W2141193993 @default.
- W4224238051 cites W2143524088 @default.
- W4224238051 cites W2155782014 @default.
- W4224238051 cites W2156199816 @default.
- W4224238051 cites W2160547390 @default.
- W4224238051 cites W2164548241 @default.
- W4224238051 cites W2169939373 @default.
- W4224238051 cites W2169939759 @default.
- W4224238051 cites W2180678688 @default.
- W4224238051 cites W2182532644 @default.
- W4224238051 cites W2191483095 @default.
- W4224238051 cites W2328463797 @default.
- W4224238051 cites W2332593505 @default.
- W4224238051 cites W2499899645 @default.
- W4224238051 cites W2560167313 @default.
- W4224238051 cites W2764084117 @default.
- W4224238051 cites W2765140304 @default.
- W4224238051 cites W2771933030 @default.