Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224240534> ?p ?o ?g. }
- W4224240534 endingPage "102244" @default.
- W4224240534 startingPage "102244" @default.
- W4224240534 abstract "Green energy management has become a critical economic solution for efficient energy consumption; however, the available literature is deficient in emphasising the importance of edge intelligence in a controllable Internet of Things (IoT). Green energy aware IoT networks are well-suited for a variety of real-time applications such as smart cities, smart homes, smart grids, and industries. Due to the fact that IoT nodes are energy constrained and function on a small internal battery, the development of energy-efficient solutions becomes important. Simultaneously, it is necessary to forecast energy consumption in energy aware IoT networks in order to meet upcoming load. With this in mind, this research proposes a novel green energy-aware cluster communication and future load prediction technique for IoT networks called GEQCC-FLP. The proposed GEQCC-FLP technique’s objective is to determine the effective set of cluster heads (CHs) and forecast the network’s incoming load. The GEQCC-FLP technique consists of two primary stages: clustering using a satin bowerbird optimizer (SBO) and load prediction using a deep random vector functional link network (DRVFLN). Additionally, the constructs a fitness function from three parameters: energy, distance, and delay. Additionally, the Adam optimizer can be used to optimise the DRVFLN model’s hyperparameters, hence improving the prediction outcomes. A DRVFLN-based Adam optimizer with deep random vector functional link networks is used to forecast the network’s incoming load (DRVFLN). This clustering technique is based on the SBO algorithm, which generates three fitness function parameters: energy input, distance travelled, and delay. To demonstrate the enhanced outcome of the GEQCC-FLP technique, a variety of simulations are run and the results examined from a variety of angles. The GEQCC-FLP methodology outperformed the prior methods by 0.563 and 0.687, respectively, in terms of root mean square error (RMSE) and mean absolute percent error (MAPE). The extensive results and discussion support the conclusion that the GEQCC-FLP strategy is an extremely effective method for regulating the usage of renewable energy in Internet of Things networks. The experimental results indicated that the GEQCC-FLP technique outperformed the other techniques." @default.
- W4224240534 created "2022-04-26" @default.
- W4224240534 creator A5024973934 @default.
- W4224240534 creator A5033711346 @default.
- W4224240534 creator A5034495016 @default.
- W4224240534 creator A5038824095 @default.
- W4224240534 creator A5062181201 @default.
- W4224240534 creator A5066963914 @default.
- W4224240534 date "2022-08-01" @default.
- W4224240534 modified "2023-10-18" @default.
- W4224240534 title "Green energy aware and cluster based communication for future load prediction in IoT" @default.
- W4224240534 cites W2129079462 @default.
- W4224240534 cites W2571820952 @default.
- W4224240534 cites W2608997467 @default.
- W4224240534 cites W2773998623 @default.
- W4224240534 cites W2790428302 @default.
- W4224240534 cites W2790566149 @default.
- W4224240534 cites W2926519916 @default.
- W4224240534 cites W2948490758 @default.
- W4224240534 cites W2963643265 @default.
- W4224240534 cites W2978814878 @default.
- W4224240534 cites W3007753569 @default.
- W4224240534 cites W3019822238 @default.
- W4224240534 cites W3047269164 @default.
- W4224240534 cites W3124111919 @default.
- W4224240534 cites W3156969875 @default.
- W4224240534 cites W3167341124 @default.
- W4224240534 cites W3192230747 @default.
- W4224240534 cites W3197622673 @default.
- W4224240534 cites W4200014858 @default.
- W4224240534 cites W4200181556 @default.
- W4224240534 cites W4200440366 @default.
- W4224240534 cites W4205651851 @default.
- W4224240534 cites W4212796243 @default.
- W4224240534 cites W4212817512 @default.
- W4224240534 cites W4213368555 @default.
- W4224240534 cites W4214909226 @default.
- W4224240534 cites W3135497894 @default.
- W4224240534 doi "https://doi.org/10.1016/j.seta.2022.102244" @default.
- W4224240534 hasPublicationYear "2022" @default.
- W4224240534 type Work @default.
- W4224240534 citedByCount "15" @default.
- W4224240534 countsByYear W42242405342022 @default.
- W4224240534 countsByYear W42242405342023 @default.
- W4224240534 crossrefType "journal-article" @default.
- W4224240534 hasAuthorship W4224240534A5024973934 @default.
- W4224240534 hasAuthorship W4224240534A5033711346 @default.
- W4224240534 hasAuthorship W4224240534A5034495016 @default.
- W4224240534 hasAuthorship W4224240534A5038824095 @default.
- W4224240534 hasAuthorship W4224240534A5062181201 @default.
- W4224240534 hasAuthorship W4224240534A5066963914 @default.
- W4224240534 hasConcept C105795698 @default.
- W4224240534 hasConcept C119599485 @default.
- W4224240534 hasConcept C120314980 @default.
- W4224240534 hasConcept C12267149 @default.
- W4224240534 hasConcept C124101348 @default.
- W4224240534 hasConcept C127413603 @default.
- W4224240534 hasConcept C14036430 @default.
- W4224240534 hasConcept C154945302 @default.
- W4224240534 hasConcept C186370098 @default.
- W4224240534 hasConcept C2742236 @default.
- W4224240534 hasConcept C2780165032 @default.
- W4224240534 hasConcept C33923547 @default.
- W4224240534 hasConcept C41008148 @default.
- W4224240534 hasConcept C73555534 @default.
- W4224240534 hasConcept C78458016 @default.
- W4224240534 hasConcept C79403827 @default.
- W4224240534 hasConcept C86803240 @default.
- W4224240534 hasConceptScore W4224240534C105795698 @default.
- W4224240534 hasConceptScore W4224240534C119599485 @default.
- W4224240534 hasConceptScore W4224240534C120314980 @default.
- W4224240534 hasConceptScore W4224240534C12267149 @default.
- W4224240534 hasConceptScore W4224240534C124101348 @default.
- W4224240534 hasConceptScore W4224240534C127413603 @default.
- W4224240534 hasConceptScore W4224240534C14036430 @default.
- W4224240534 hasConceptScore W4224240534C154945302 @default.
- W4224240534 hasConceptScore W4224240534C186370098 @default.
- W4224240534 hasConceptScore W4224240534C2742236 @default.
- W4224240534 hasConceptScore W4224240534C2780165032 @default.
- W4224240534 hasConceptScore W4224240534C33923547 @default.
- W4224240534 hasConceptScore W4224240534C41008148 @default.
- W4224240534 hasConceptScore W4224240534C73555534 @default.
- W4224240534 hasConceptScore W4224240534C78458016 @default.
- W4224240534 hasConceptScore W4224240534C79403827 @default.
- W4224240534 hasConceptScore W4224240534C86803240 @default.
- W4224240534 hasLocation W42242405341 @default.
- W4224240534 hasOpenAccess W4224240534 @default.
- W4224240534 hasPrimaryLocation W42242405341 @default.
- W4224240534 hasRelatedWork W1518112390 @default.
- W4224240534 hasRelatedWork W2020845479 @default.
- W4224240534 hasRelatedWork W2025004390 @default.
- W4224240534 hasRelatedWork W2029268337 @default.
- W4224240534 hasRelatedWork W2089393798 @default.
- W4224240534 hasRelatedWork W2169790708 @default.
- W4224240534 hasRelatedWork W2290338640 @default.
- W4224240534 hasRelatedWork W2903687191 @default.
- W4224240534 hasRelatedWork W3168811426 @default.
- W4224240534 hasRelatedWork W3193819027 @default.