Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224246655> ?p ?o ?g. }
- W4224246655 endingPage "730" @default.
- W4224246655 startingPage "715" @default.
- W4224246655 abstract "Abstract Optimizing water management has become one of the biggest challenges for grapevine growers in California, especially during drought conditions. Monitoring grapevine water status and stress level across the whole vineyard is an essential step for precision irrigation management of vineyards to conserve water. We developed a unified machine learning model to map leaf water potential ( $${psi }_{mathrm{leaf}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:msub><mml:mi>ψ</mml:mi><mml:mi>leaf</mml:mi></mml:msub></mml:math> ), by combining high-resolution multispectral remote sensing imagery and weather data. We conducted six unmanned aerial vehicle (UAV) flights with a five-band multispectral camera from 2018 to 2020 over three commercial vineyards, concurrently with ground measurements of sampled vines. Using vegetation indices from the orthomosaiced UAV imagery and weather data as predictors, the random forest (RF) full model captured 77% of $${psi }_{mathrm{leaf}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:msub><mml:mi>ψ</mml:mi><mml:mi>leaf</mml:mi></mml:msub></mml:math> variance, with a root mean square error (RMSE) of 0.123 MPa, and a mean absolute error (MAE) of 0.100 MPa, based on the validation datasets. Air temperature, vapor pressure deficit, and red edge indices such as the normalized difference red edge index (NDRE) were found as the most important variables in estimating $${psi }_{mathrm{leaf}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:msub><mml:mi>ψ</mml:mi><mml:mi>leaf</mml:mi></mml:msub></mml:math> across space and time. The reduced RF models excluding weather and red edge indices explained 52–48% of $${psi }_{mathrm{leaf}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:msub><mml:mi>ψ</mml:mi><mml:mi>leaf</mml:mi></mml:msub></mml:math> variance, respectively. Maps of the estimated $${psi }_{mathrm{leaf}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:msub><mml:mi>ψ</mml:mi><mml:mi>leaf</mml:mi></mml:msub></mml:math> from the RF full model captured well the patterns of both within- and cross-field spatial variability and the temporal change of vine water status, consistent with irrigation management and patterns observed from the ground sampling. Our results demonstrated the utility of UAV-based aerial multispectral imaging for supplementing and scaling up the traditional point-based ground sampling of $${psi }_{mathrm{leaf}}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:msub><mml:mi>ψ</mml:mi><mml:mi>leaf</mml:mi></mml:msub></mml:math> . The pre-trained machine learning model, driven by UAV imagery and weather data, provides a cost-effective and scalable tool to facilitate data-driven precision irrigation management at individual vine levels in vineyards." @default.
- W4224246655 created "2022-04-26" @default.
- W4224246655 creator A5002630232 @default.
- W4224246655 creator A5022882684 @default.
- W4224246655 creator A5041250416 @default.
- W4224246655 creator A5046855484 @default.
- W4224246655 creator A5058979424 @default.
- W4224246655 creator A5081983851 @default.
- W4224246655 date "2022-04-18" @default.
- W4224246655 modified "2023-09-25" @default.
- W4224246655 title "Vine water status mapping with multispectral UAV imagery and machine learning" @default.
- W4224246655 cites W1831050183 @default.
- W4224246655 cites W1871264645 @default.
- W4224246655 cites W1898091954 @default.
- W4224246655 cites W1964217023 @default.
- W4224246655 cites W1982546148 @default.
- W4224246655 cites W1986786848 @default.
- W4224246655 cites W1998842586 @default.
- W4224246655 cites W2002320280 @default.
- W4224246655 cites W2006259528 @default.
- W4224246655 cites W2011475440 @default.
- W4224246655 cites W2020868791 @default.
- W4224246655 cites W2026219386 @default.
- W4224246655 cites W2036925375 @default.
- W4224246655 cites W2047114658 @default.
- W4224246655 cites W2052700773 @default.
- W4224246655 cites W2062982970 @default.
- W4224246655 cites W2075818603 @default.
- W4224246655 cites W2098320370 @default.
- W4224246655 cites W2107918911 @default.
- W4224246655 cites W2113410727 @default.
- W4224246655 cites W2125847307 @default.
- W4224246655 cites W2128866545 @default.
- W4224246655 cites W2130098273 @default.
- W4224246655 cites W2133059825 @default.
- W4224246655 cites W2139034598 @default.
- W4224246655 cites W2142087338 @default.
- W4224246655 cites W2143481518 @default.
- W4224246655 cites W2153958436 @default.
- W4224246655 cites W2154083639 @default.
- W4224246655 cites W2162421262 @default.
- W4224246655 cites W2167997295 @default.
- W4224246655 cites W2171979590 @default.
- W4224246655 cites W2172036222 @default.
- W4224246655 cites W2186177133 @default.
- W4224246655 cites W2187076425 @default.
- W4224246655 cites W2271038202 @default.
- W4224246655 cites W2317582304 @default.
- W4224246655 cites W2324011894 @default.
- W4224246655 cites W2463261794 @default.
- W4224246655 cites W2610932088 @default.
- W4224246655 cites W2617056706 @default.
- W4224246655 cites W2621241958 @default.
- W4224246655 cites W2732577628 @default.
- W4224246655 cites W2741291720 @default.
- W4224246655 cites W2751042086 @default.
- W4224246655 cites W2754367764 @default.
- W4224246655 cites W2766295554 @default.
- W4224246655 cites W2789758093 @default.
- W4224246655 cites W2790861445 @default.
- W4224246655 cites W2793603191 @default.
- W4224246655 cites W2796427420 @default.
- W4224246655 cites W2896746894 @default.
- W4224246655 cites W2955384860 @default.
- W4224246655 cites W2971643606 @default.
- W4224246655 cites W2972933435 @default.
- W4224246655 cites W2990378819 @default.
- W4224246655 cites W3009990201 @default.
- W4224246655 cites W3022122043 @default.
- W4224246655 cites W3045245863 @default.
- W4224246655 cites W3096846291 @default.
- W4224246655 doi "https://doi.org/10.1007/s00271-022-00788-w" @default.
- W4224246655 hasPublicationYear "2022" @default.
- W4224246655 type Work @default.
- W4224246655 citedByCount "6" @default.
- W4224246655 countsByYear W42242466552022 @default.
- W4224246655 countsByYear W42242466552023 @default.
- W4224246655 crossrefType "journal-article" @default.
- W4224246655 hasAuthorship W4224246655A5002630232 @default.
- W4224246655 hasAuthorship W4224246655A5022882684 @default.
- W4224246655 hasAuthorship W4224246655A5041250416 @default.
- W4224246655 hasAuthorship W4224246655A5046855484 @default.
- W4224246655 hasAuthorship W4224246655A5058979424 @default.
- W4224246655 hasAuthorship W4224246655A5081983851 @default.
- W4224246655 hasBestOaLocation W42242466551 @default.
- W4224246655 hasConcept C105795698 @default.
- W4224246655 hasConcept C11413529 @default.
- W4224246655 hasConcept C119857082 @default.
- W4224246655 hasConcept C127313418 @default.
- W4224246655 hasConcept C139945424 @default.
- W4224246655 hasConcept C154945302 @default.
- W4224246655 hasConcept C159078339 @default.
- W4224246655 hasConcept C173163844 @default.
- W4224246655 hasConcept C2776388979 @default.
- W4224246655 hasConcept C33923547 @default.
- W4224246655 hasConcept C41008148 @default.
- W4224246655 hasConcept C62649853 @default.
- W4224246655 hasConceptScore W4224246655C105795698 @default.