Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224248082> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4224248082 endingPage "106827" @default.
- W4224248082 startingPage "106827" @default.
- W4224248082 abstract "Recent attempts on adopting artificial intelligence algorithm on coronary diagnosis had limitations on data quantity and quality. While most of previous studies only used vessel image as input data, flow features and biometric features should be also considered. Moreover, the accuracy should be optimized within gray zone as the purpose is to decide stent insertion with estimated fractional flow reserve.The main purpose of this study is to develop an artificial intelligence-based coronary vascular diagnosis system focused on performance in the gray zone, from CT image extraction to FFR estimation. Three main issues should be considered for an algorithm to be used for pre-screening: algorithm optimization in the gray zone, minimization of labor during image processing, and consideration of flow and biometric features. This paper introduces a full FFR pre-screening system from automatic image extraction to an algorithm for estimating the FFR value.The main techniques used in this study are an automatic image extraction algorithm, lattice Boltzmann method based computational fluid dynamics analysis of a synthetic model and patient data, and an AI algorithm optimization. For feature extraction, this study focused on an automatic process to reduce manual labor. The algorithm consisted of two steps: the first algorithm calculates flow features from geometrical features, and the second algorithm estimates the FFR value from flow features and patient biometric features. Algorithm selection, outlier elimination, and k-fold selection were included to optimize the algorithm.Eight types of algorithms including two neural network models and six machine learning models were optimized and tested. The random forest model shows the highest performance before optimization, whereas the multilayer perceptron regressor shows the highest gray zone accuracy after optimization." @default.
- W4224248082 created "2022-04-26" @default.
- W4224248082 creator A5023176236 @default.
- W4224248082 creator A5025163809 @default.
- W4224248082 creator A5025329769 @default.
- W4224248082 creator A5057539471 @default.
- W4224248082 creator A5067689415 @default.
- W4224248082 creator A5075444776 @default.
- W4224248082 creator A5076132049 @default.
- W4224248082 creator A5079338232 @default.
- W4224248082 creator A5085607227 @default.
- W4224248082 date "2022-06-01" @default.
- W4224248082 modified "2023-10-16" @default.
- W4224248082 title "Optimization of FFR prediction algorithm for gray zone by hemodynamic features with synthetic model and biometric data" @default.
- W4224248082 cites W127494906 @default.
- W4224248082 cites W1480376833 @default.
- W4224248082 cites W2010348468 @default.
- W4224248082 cites W2017206564 @default.
- W4224248082 cites W2023344549 @default.
- W4224248082 cites W2038410048 @default.
- W4224248082 cites W2072061148 @default.
- W4224248082 cites W2095713606 @default.
- W4224248082 cites W2115416118 @default.
- W4224248082 cites W2117242079 @default.
- W4224248082 cites W2122516030 @default.
- W4224248082 cites W2219094525 @default.
- W4224248082 cites W2291736062 @default.
- W4224248082 cites W2313530378 @default.
- W4224248082 cites W2335916523 @default.
- W4224248082 cites W2774288077 @default.
- W4224248082 cites W2793254352 @default.
- W4224248082 cites W2808385112 @default.
- W4224248082 cites W2888497957 @default.
- W4224248082 cites W2896872742 @default.
- W4224248082 cites W2902881683 @default.
- W4224248082 cites W2927851116 @default.
- W4224248082 cites W2932496507 @default.
- W4224248082 cites W2951545848 @default.
- W4224248082 cites W2963994979 @default.
- W4224248082 cites W2968272384 @default.
- W4224248082 cites W3000904858 @default.
- W4224248082 cites W3008402963 @default.
- W4224248082 cites W3008960193 @default.
- W4224248082 cites W3034750607 @default.
- W4224248082 cites W3047451200 @default.
- W4224248082 cites W3092593649 @default.
- W4224248082 cites W3117630903 @default.
- W4224248082 doi "https://doi.org/10.1016/j.cmpb.2022.106827" @default.
- W4224248082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35500505" @default.
- W4224248082 hasPublicationYear "2022" @default.
- W4224248082 type Work @default.
- W4224248082 citedByCount "5" @default.
- W4224248082 countsByYear W42242480822022 @default.
- W4224248082 countsByYear W42242480822023 @default.
- W4224248082 crossrefType "journal-article" @default.
- W4224248082 hasAuthorship W4224248082A5023176236 @default.
- W4224248082 hasAuthorship W4224248082A5025163809 @default.
- W4224248082 hasAuthorship W4224248082A5025329769 @default.
- W4224248082 hasAuthorship W4224248082A5057539471 @default.
- W4224248082 hasAuthorship W4224248082A5067689415 @default.
- W4224248082 hasAuthorship W4224248082A5075444776 @default.
- W4224248082 hasAuthorship W4224248082A5076132049 @default.
- W4224248082 hasAuthorship W4224248082A5079338232 @default.
- W4224248082 hasAuthorship W4224248082A5085607227 @default.
- W4224248082 hasConcept C11413529 @default.
- W4224248082 hasConcept C153180895 @default.
- W4224248082 hasConcept C154945302 @default.
- W4224248082 hasConcept C184297639 @default.
- W4224248082 hasConcept C41008148 @default.
- W4224248082 hasConceptScore W4224248082C11413529 @default.
- W4224248082 hasConceptScore W4224248082C153180895 @default.
- W4224248082 hasConceptScore W4224248082C154945302 @default.
- W4224248082 hasConceptScore W4224248082C184297639 @default.
- W4224248082 hasConceptScore W4224248082C41008148 @default.
- W4224248082 hasFunder F4320321681 @default.
- W4224248082 hasFunder F4320322014 @default.
- W4224248082 hasFunder F4320322030 @default.
- W4224248082 hasFunder F4320322034 @default.
- W4224248082 hasLocation W42242480821 @default.
- W4224248082 hasLocation W42242480822 @default.
- W4224248082 hasOpenAccess W4224248082 @default.
- W4224248082 hasPrimaryLocation W42242480821 @default.
- W4224248082 hasRelatedWork W2033914206 @default.
- W4224248082 hasRelatedWork W2042327336 @default.
- W4224248082 hasRelatedWork W2046077695 @default.
- W4224248082 hasRelatedWork W2146076056 @default.
- W4224248082 hasRelatedWork W2163831990 @default.
- W4224248082 hasRelatedWork W2378160586 @default.
- W4224248082 hasRelatedWork W2996038082 @default.
- W4224248082 hasRelatedWork W3003836766 @default.
- W4224248082 hasRelatedWork W3047965787 @default.
- W4224248082 hasRelatedWork W2887610733 @default.
- W4224248082 hasVolume "220" @default.
- W4224248082 isParatext "false" @default.
- W4224248082 isRetracted "false" @default.
- W4224248082 workType "article" @default.