Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224249519> ?p ?o ?g. }
- W4224249519 endingPage "45" @default.
- W4224249519 startingPage "34" @default.
- W4224249519 abstract "Gas sensing properties of metal oxide semiconductors draw high attention due to their simple fabricating methods, and low cost, chemical, and physical properties. In general, a high bandgap (>2 eV) can cause them to react in the UV region through the electromagnetic spectrum. Controlling the UV-photodetection and gas sensing ability of MoO2-MoO3 thin film through tungsten (W) doping of different ratios have been reported here. The preparation of these films was grown using a reactive magnetron sputtering system with different power sputtering of W-content. The bandgap calculations showed that the samples have a wide bandgap value. A small particle size of 8nm was observed through high W doping concentration which enhanced these materials toward high efficient gas sensing and UV photodetector applications. The UV optical sensor exhibits a high responsivity value of 2500A/W and an external quantum efficiency (EQE) value of 5x109 at 365nm. Also, an increase in the photocurrent gain value with increasing the W amount with a maximum value of 0.13, while a photocurrent of 1mA was observed. On the other hand, a fast-response/recovery time-based CO2 gas sensor of less than 10 sec was observed. The thin-film sensors showed well-defined adsorption and desorption kinetics in a CO2 environment with a p-type chemisorption behavior." @default.
- W4224249519 created "2022-04-26" @default.
- W4224249519 creator A5026208540 @default.
- W4224249519 creator A5030114801 @default.
- W4224249519 creator A5078280017 @default.
- W4224249519 creator A5079469563 @default.
- W4224249519 creator A5082770152 @default.
- W4224249519 creator A5083141057 @default.
- W4224249519 creator A5089250552 @default.
- W4224249519 date "2022-04-25" @default.
- W4224249519 modified "2023-10-06" @default.
- W4224249519 title "Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications" @default.
- W4224249519 cites W1064309952 @default.
- W4224249519 cites W121135501 @default.
- W4224249519 cites W1496550469 @default.
- W4224249519 cites W1553962936 @default.
- W4224249519 cites W1557327483 @default.
- W4224249519 cites W1978905540 @default.
- W4224249519 cites W1982817480 @default.
- W4224249519 cites W1998981899 @default.
- W4224249519 cites W2003369118 @default.
- W4224249519 cites W2004557252 @default.
- W4224249519 cites W2020038979 @default.
- W4224249519 cites W2055743162 @default.
- W4224249519 cites W2060429741 @default.
- W4224249519 cites W2074477983 @default.
- W4224249519 cites W2081243242 @default.
- W4224249519 cites W2082807070 @default.
- W4224249519 cites W2124568453 @default.
- W4224249519 cites W2194401073 @default.
- W4224249519 cites W2223320712 @default.
- W4224249519 cites W2334683705 @default.
- W4224249519 cites W2345724430 @default.
- W4224249519 cites W2415262207 @default.
- W4224249519 cites W2427366633 @default.
- W4224249519 cites W2532606981 @default.
- W4224249519 cites W2546841641 @default.
- W4224249519 cites W2584522913 @default.
- W4224249519 cites W2604762237 @default.
- W4224249519 cites W2620389587 @default.
- W4224249519 cites W2757303212 @default.
- W4224249519 cites W2765803686 @default.
- W4224249519 cites W2771892099 @default.
- W4224249519 cites W2783687585 @default.
- W4224249519 cites W2790561301 @default.
- W4224249519 cites W2792865833 @default.
- W4224249519 cites W2804319712 @default.
- W4224249519 cites W2901577187 @default.
- W4224249519 cites W2908206147 @default.
- W4224249519 cites W2912098268 @default.
- W4224249519 cites W2914086727 @default.
- W4224249519 cites W2921852674 @default.
- W4224249519 cites W2931069132 @default.
- W4224249519 cites W2940487325 @default.
- W4224249519 cites W2943377129 @default.
- W4224249519 cites W2947664285 @default.
- W4224249519 cites W2952298413 @default.
- W4224249519 cites W2964524028 @default.
- W4224249519 cites W2966301919 @default.
- W4224249519 cites W2966705110 @default.
- W4224249519 cites W2971702567 @default.
- W4224249519 cites W2974989172 @default.
- W4224249519 cites W2981009737 @default.
- W4224249519 cites W2987555695 @default.
- W4224249519 cites W2989079883 @default.
- W4224249519 cites W2990256109 @default.
- W4224249519 cites W2991609276 @default.
- W4224249519 cites W2993811392 @default.
- W4224249519 cites W2997695660 @default.
- W4224249519 cites W2997802828 @default.
- W4224249519 cites W3002778023 @default.
- W4224249519 cites W3006948750 @default.
- W4224249519 cites W3016707258 @default.
- W4224249519 cites W363490832 @default.
- W4224249519 cites W4235619548 @default.
- W4224249519 cites W452465010 @default.
- W4224249519 doi "https://doi.org/10.35238/sufefd.1068674" @default.
- W4224249519 hasPublicationYear "2022" @default.
- W4224249519 type Work @default.
- W4224249519 citedByCount "3" @default.
- W4224249519 countsByYear W42242495192022 @default.
- W4224249519 countsByYear W42242495192023 @default.
- W4224249519 crossrefType "journal-article" @default.
- W4224249519 hasAuthorship W4224249519A5026208540 @default.
- W4224249519 hasAuthorship W4224249519A5030114801 @default.
- W4224249519 hasAuthorship W4224249519A5078280017 @default.
- W4224249519 hasAuthorship W4224249519A5079469563 @default.
- W4224249519 hasAuthorship W4224249519A5082770152 @default.
- W4224249519 hasAuthorship W4224249519A5083141057 @default.
- W4224249519 hasAuthorship W4224249519A5089250552 @default.
- W4224249519 hasBestOaLocation W42242495191 @default.
- W4224249519 hasConcept C108225325 @default.
- W4224249519 hasConcept C113196181 @default.
- W4224249519 hasConcept C171250308 @default.
- W4224249519 hasConcept C178889773 @default.
- W4224249519 hasConcept C181966813 @default.
- W4224249519 hasConcept C185592680 @default.
- W4224249519 hasConcept C19067145 @default.