Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224252499> ?p ?o ?g. }
- W4224252499 endingPage "1976" @default.
- W4224252499 startingPage "1967" @default.
- W4224252499 abstract "The present work raises an investigation about prediction and the feature importance to estimate the COVID-19 infection, using Machine Learning approach. Our work analyzed the inclusion of climatic features, mobility, government actions and the number of cases per health sub-territory from an existing model. The Random Forest with Permutation Importance method was used to assess the importance and list the thirty most relevant that represent the probability of infection of the disease. Among all features, the most important were: i) the variables per region health stand out, ii) period comprised between the date of notification and symptom onset, iii) symptoms features as fever, cough and sore throat, iv) variables of the traffic flow and mobility, and also v) wheathers features. The model was validated and reached an accuracy average of 81.82%, whereas the sensitivity and specificity achieved 87.52% and the 78.67% respectively in the infection estimate. Therefore, the proposed investigation represents an alternative to guide authorities in understanding aspects related to the disease." @default.
- W4224252499 created "2022-04-26" @default.
- W4224252499 creator A5021158005 @default.
- W4224252499 creator A5022469786 @default.
- W4224252499 creator A5036448753 @default.
- W4224252499 creator A5049266131 @default.
- W4224252499 creator A5070463595 @default.
- W4224252499 date "2022-04-23" @default.
- W4224252499 modified "2023-10-16" @default.
- W4224252499 title "Feature Importance Analysis by Nowcasting Perspective to Predict COVID-19" @default.
- W4224252499 cites W2044638348 @default.
- W4224252499 cites W2102636708 @default.
- W4224252499 cites W2117200996 @default.
- W4224252499 cites W2158143121 @default.
- W4224252499 cites W2910597988 @default.
- W4224252499 cites W2965510901 @default.
- W4224252499 cites W2969976360 @default.
- W4224252499 cites W3003573988 @default.
- W4224252499 cites W3005403371 @default.
- W4224252499 cites W3009446530 @default.
- W4224252499 cites W3010233963 @default.
- W4224252499 cites W3010863549 @default.
- W4224252499 cites W3011771926 @default.
- W4224252499 cites W3012434404 @default.
- W4224252499 cites W3012492786 @default.
- W4224252499 cites W3013351797 @default.
- W4224252499 cites W3013360115 @default.
- W4224252499 cites W3013816672 @default.
- W4224252499 cites W3014092698 @default.
- W4224252499 cites W3016131164 @default.
- W4224252499 cites W3016236951 @default.
- W4224252499 cites W3018949454 @default.
- W4224252499 cites W3019999581 @default.
- W4224252499 cites W3025394897 @default.
- W4224252499 cites W3032971139 @default.
- W4224252499 cites W3033094519 @default.
- W4224252499 cites W3038657726 @default.
- W4224252499 cites W3039163263 @default.
- W4224252499 cites W3041493976 @default.
- W4224252499 cites W3042669018 @default.
- W4224252499 cites W3043220501 @default.
- W4224252499 cites W3043429151 @default.
- W4224252499 cites W3043706269 @default.
- W4224252499 cites W3044296630 @default.
- W4224252499 cites W3091734424 @default.
- W4224252499 cites W3106763172 @default.
- W4224252499 cites W3112714412 @default.
- W4224252499 cites W3118577024 @default.
- W4224252499 cites W3119464161 @default.
- W4224252499 cites W3119890139 @default.
- W4224252499 cites W3137135253 @default.
- W4224252499 cites W3172502848 @default.
- W4224252499 cites W4205133139 @default.
- W4224252499 doi "https://doi.org/10.1007/s11036-022-01966-y" @default.
- W4224252499 hasPublicationYear "2022" @default.
- W4224252499 type Work @default.
- W4224252499 citedByCount "1" @default.
- W4224252499 countsByYear W42242524992023 @default.
- W4224252499 crossrefType "journal-article" @default.
- W4224252499 hasAuthorship W4224252499A5021158005 @default.
- W4224252499 hasAuthorship W4224252499A5022469786 @default.
- W4224252499 hasAuthorship W4224252499A5036448753 @default.
- W4224252499 hasAuthorship W4224252499A5049266131 @default.
- W4224252499 hasAuthorship W4224252499A5070463595 @default.
- W4224252499 hasBestOaLocation W42242524991 @default.
- W4224252499 hasConcept C105795698 @default.
- W4224252499 hasConcept C119857082 @default.
- W4224252499 hasConcept C12713177 @default.
- W4224252499 hasConcept C138885662 @default.
- W4224252499 hasConcept C141071460 @default.
- W4224252499 hasConcept C142724271 @default.
- W4224252499 hasConcept C153294291 @default.
- W4224252499 hasConcept C154945302 @default.
- W4224252499 hasConcept C169258074 @default.
- W4224252499 hasConcept C205649164 @default.
- W4224252499 hasConcept C2776401178 @default.
- W4224252499 hasConcept C2777870961 @default.
- W4224252499 hasConcept C2779134260 @default.
- W4224252499 hasConcept C2781013037 @default.
- W4224252499 hasConcept C3008058167 @default.
- W4224252499 hasConcept C33923547 @default.
- W4224252499 hasConcept C41008148 @default.
- W4224252499 hasConcept C41895202 @default.
- W4224252499 hasConcept C524204448 @default.
- W4224252499 hasConcept C71924100 @default.
- W4224252499 hasConceptScore W4224252499C105795698 @default.
- W4224252499 hasConceptScore W4224252499C119857082 @default.
- W4224252499 hasConceptScore W4224252499C12713177 @default.
- W4224252499 hasConceptScore W4224252499C138885662 @default.
- W4224252499 hasConceptScore W4224252499C141071460 @default.
- W4224252499 hasConceptScore W4224252499C142724271 @default.
- W4224252499 hasConceptScore W4224252499C153294291 @default.
- W4224252499 hasConceptScore W4224252499C154945302 @default.
- W4224252499 hasConceptScore W4224252499C169258074 @default.
- W4224252499 hasConceptScore W4224252499C205649164 @default.
- W4224252499 hasConceptScore W4224252499C2776401178 @default.
- W4224252499 hasConceptScore W4224252499C2777870961 @default.
- W4224252499 hasConceptScore W4224252499C2779134260 @default.