Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224252652> ?p ?o ?g. }
- W4224252652 endingPage "591" @default.
- W4224252652 startingPage "591" @default.
- W4224252652 abstract "It is critical to produce more crop per drop in an environment where water availability is decreasing and competition for water is increasing. In order to build such agricultural production systems, well parameterized crop growth models are essential. While in most crop growth modeling research, focus is on gathering model inputs such as climate data, less emphasis is paid to collecting the critical soil hydraulic properties (SHPs) data needed to operate crop growth models. Collection of SHPs data for the Zambezi River Basin (ZRB) is extremely labor-intensive and expensive, thus alternate technologies such as digital soil mapping (DSM) must be explored. We evaluated five types of DSM models to establish the best spatially explicit estimates of the soil water content at pF0.0 (saturation), pF2.0 (field capacity), and pF4.2 (wilting point), and of the saturated hydraulic conductivity (Ksat) across the ZRB by using estimates of locally calibrated pedotransfer functions of 1481 locations for training and testing the DSM models, as well as a reference dataset of measurements from 174 locations for validating the DSM models. We produced coverages of environmental covariates from various source datasets, including climate variables, soil and land use maps, parent materials and lithologic units, derivatives of a digital elevation model (DEM), and Landsat imagery with a spatial resolution of 90 m. The five types of models included multiple linear regression and four machine learning techniques: artificial neural network, gradient boosted regression trees, random forest, and support vector machine. Where the residuals of the initial DSM models were spatially autocorrelated, the models were extended/complemented with residual kriging (RK). Spatial autocorrelation in the model residuals was observed for all five models of each of the three water contents, but not for Ksat. On average for the water content, the R2 ranged from 0.40 to 0.80 in training and test datasets before adding kriged model residuals and ranged from 0.80 to 0.95 after adding model residuals. Overall, the best prediction method consisted of random forest as the deterministic model, complemented with RK, whereby soil texture followed by climate and topographic elevation variables were the most important covariates. The resulting maps are a ready-to-use resource for hydrologists and crop modelers to aliment and calibrate their hydrological and crop growth models." @default.
- W4224252652 created "2022-04-26" @default.
- W4224252652 creator A5009637676 @default.
- W4224252652 creator A5022361857 @default.
- W4224252652 creator A5039810630 @default.
- W4224252652 creator A5061786535 @default.
- W4224252652 creator A5080731536 @default.
- W4224252652 date "2022-04-18" @default.
- W4224252652 modified "2023-09-30" @default.
- W4224252652 title "Machine Learning Techniques for Estimating Hydraulic Properties of the Topsoil across the Zambezi River Basin" @default.
- W4224252652 cites W1058055990 @default.
- W4224252652 cites W1490839515 @default.
- W4224252652 cites W1971229472 @default.
- W4224252652 cites W1981213426 @default.
- W4224252652 cites W1994975670 @default.
- W4224252652 cites W2000190887 @default.
- W4224252652 cites W2007873570 @default.
- W4224252652 cites W2010081281 @default.
- W4224252652 cites W2016989768 @default.
- W4224252652 cites W2024697317 @default.
- W4224252652 cites W2033960614 @default.
- W4224252652 cites W2054325787 @default.
- W4224252652 cites W2068307090 @default.
- W4224252652 cites W2078712779 @default.
- W4224252652 cites W2088363839 @default.
- W4224252652 cites W2091259694 @default.
- W4224252652 cites W2102467070 @default.
- W4224252652 cites W2107620525 @default.
- W4224252652 cites W2109582738 @default.
- W4224252652 cites W2129972683 @default.
- W4224252652 cites W2153978805 @default.
- W4224252652 cites W2191592919 @default.
- W4224252652 cites W2207880828 @default.
- W4224252652 cites W2234929136 @default.
- W4224252652 cites W2588003345 @default.
- W4224252652 cites W2589351175 @default.
- W4224252652 cites W2602718975 @default.
- W4224252652 cites W2608720956 @default.
- W4224252652 cites W2613126452 @default.
- W4224252652 cites W2614464134 @default.
- W4224252652 cites W2899087191 @default.
- W4224252652 cites W2929575844 @default.
- W4224252652 cites W2995150843 @default.
- W4224252652 cites W3086056576 @default.
- W4224252652 cites W3108092948 @default.
- W4224252652 cites W3166420679 @default.
- W4224252652 cites W3200303594 @default.
- W4224252652 cites W4211056572 @default.
- W4224252652 doi "https://doi.org/10.3390/land11040591" @default.
- W4224252652 hasPublicationYear "2022" @default.
- W4224252652 type Work @default.
- W4224252652 citedByCount "3" @default.
- W4224252652 countsByYear W42242526522022 @default.
- W4224252652 countsByYear W42242526522023 @default.
- W4224252652 crossrefType "journal-article" @default.
- W4224252652 hasAuthorship W4224252652A5009637676 @default.
- W4224252652 hasAuthorship W4224252652A5022361857 @default.
- W4224252652 hasAuthorship W4224252652A5039810630 @default.
- W4224252652 hasAuthorship W4224252652A5061786535 @default.
- W4224252652 hasAuthorship W4224252652A5080731536 @default.
- W4224252652 hasBestOaLocation W42242526521 @default.
- W4224252652 hasConcept C104471815 @default.
- W4224252652 hasConcept C127313418 @default.
- W4224252652 hasConcept C144144481 @default.
- W4224252652 hasConcept C159390177 @default.
- W4224252652 hasConcept C159750122 @default.
- W4224252652 hasConcept C164285268 @default.
- W4224252652 hasConcept C187320778 @default.
- W4224252652 hasConcept C20529654 @default.
- W4224252652 hasConcept C27934549 @default.
- W4224252652 hasConcept C39432304 @default.
- W4224252652 hasConcept C63184880 @default.
- W4224252652 hasConcept C71864017 @default.
- W4224252652 hasConcept C76886044 @default.
- W4224252652 hasConceptScore W4224252652C104471815 @default.
- W4224252652 hasConceptScore W4224252652C127313418 @default.
- W4224252652 hasConceptScore W4224252652C144144481 @default.
- W4224252652 hasConceptScore W4224252652C159390177 @default.
- W4224252652 hasConceptScore W4224252652C159750122 @default.
- W4224252652 hasConceptScore W4224252652C164285268 @default.
- W4224252652 hasConceptScore W4224252652C187320778 @default.
- W4224252652 hasConceptScore W4224252652C20529654 @default.
- W4224252652 hasConceptScore W4224252652C27934549 @default.
- W4224252652 hasConceptScore W4224252652C39432304 @default.
- W4224252652 hasConceptScore W4224252652C63184880 @default.
- W4224252652 hasConceptScore W4224252652C71864017 @default.
- W4224252652 hasConceptScore W4224252652C76886044 @default.
- W4224252652 hasIssue "4" @default.
- W4224252652 hasLocation W42242526521 @default.
- W4224252652 hasLocation W42242526522 @default.
- W4224252652 hasLocation W42242526523 @default.
- W4224252652 hasLocation W42242526524 @default.
- W4224252652 hasOpenAccess W4224252652 @default.
- W4224252652 hasPrimaryLocation W42242526521 @default.
- W4224252652 hasRelatedWork W2118544387 @default.
- W4224252652 hasRelatedWork W2292305312 @default.
- W4224252652 hasRelatedWork W2375333406 @default.
- W4224252652 hasRelatedWork W2606201786 @default.