Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224252880> ?p ?o ?g. }
- W4224252880 endingPage "3673" @default.
- W4224252880 startingPage "3673" @default.
- W4224252880 abstract "Chronic kidney disease (CKD) is a worldwide public health problem, usually diagnosed in the late stages of the disease. To alleviate such issue, investment in early prediction is necessary. The purpose of this study is to assist the early prediction of CKD, addressing problems related to imbalanced and limited-size datasets. We used data from medical records of Brazilians with or without a diagnosis of CKD, containing the following attributes: hypertension, diabetes mellitus, creatinine, urea, albuminuria, age, gender, and glomerular filtration rate. We present an oversampling approach based on manual and automated augmentation. We experimented with the synthetic minority oversampling technique (SMOTE), Borderline-SMOTE, and Borderline-SMOTE SVM. We implemented models based on the algorithms: decision tree (DT), random forest, and multi-class AdaBoosted DTs. We also applied the overall local accuracy and local class accuracy methods for dynamic classifier selection; and the k-nearest oracles-union, k-nearest oracles-eliminate, and META-DES for dynamic ensemble selection. We analyzed the models’ performances using the hold-out validation, multiple stratified cross-validation (CV), and nested CV. The DT model presented the highest accuracy score (98.99%) using the manual augmentation and SMOTE. Our approach can assist in designing systems for the early prediction of CKD using imbalanced and limited-size datasets." @default.
- W4224252880 created "2022-04-26" @default.
- W4224252880 creator A5003095992 @default.
- W4224252880 creator A5012283902 @default.
- W4224252880 creator A5039992864 @default.
- W4224252880 creator A5052199293 @default.
- W4224252880 creator A5073901031 @default.
- W4224252880 creator A5084468073 @default.
- W4224252880 date "2022-04-06" @default.
- W4224252880 modified "2023-10-01" @default.
- W4224252880 title "Exploring Early Prediction of Chronic Kidney Disease Using Machine Learning Algorithms for Small and Imbalanced Datasets" @default.
- W4224252880 cites W1912982817 @default.
- W4224252880 cites W1975460616 @default.
- W4224252880 cites W1999686373 @default.
- W4224252880 cites W2015452969 @default.
- W4224252880 cites W2023787333 @default.
- W4224252880 cites W2030644393 @default.
- W4224252880 cites W2059697704 @default.
- W4224252880 cites W2076272581 @default.
- W4224252880 cites W2093935755 @default.
- W4224252880 cites W2133274082 @default.
- W4224252880 cites W2141007997 @default.
- W4224252880 cites W2148143831 @default.
- W4224252880 cites W2154290668 @default.
- W4224252880 cites W2168508521 @default.
- W4224252880 cites W2326965914 @default.
- W4224252880 cites W2620760558 @default.
- W4224252880 cites W2733909680 @default.
- W4224252880 cites W2783911179 @default.
- W4224252880 cites W2888299377 @default.
- W4224252880 cites W2933721769 @default.
- W4224252880 cites W2940164873 @default.
- W4224252880 cites W2963389298 @default.
- W4224252880 cites W2981679558 @default.
- W4224252880 cites W2997177758 @default.
- W4224252880 cites W3004678548 @default.
- W4224252880 cites W3005957464 @default.
- W4224252880 cites W3011275873 @default.
- W4224252880 cites W3012813218 @default.
- W4224252880 cites W3028104645 @default.
- W4224252880 cites W3045804302 @default.
- W4224252880 cites W3080733755 @default.
- W4224252880 cites W3117160760 @default.
- W4224252880 cites W3125584267 @default.
- W4224252880 cites W3137313434 @default.
- W4224252880 cites W4229508150 @default.
- W4224252880 cites W4293255424 @default.
- W4224252880 cites W4376595472 @default.
- W4224252880 doi "https://doi.org/10.3390/app12073673" @default.
- W4224252880 hasPublicationYear "2022" @default.
- W4224252880 type Work @default.
- W4224252880 citedByCount "9" @default.
- W4224252880 countsByYear W42242528802022 @default.
- W4224252880 countsByYear W42242528802023 @default.
- W4224252880 crossrefType "journal-article" @default.
- W4224252880 hasAuthorship W4224252880A5003095992 @default.
- W4224252880 hasAuthorship W4224252880A5012283902 @default.
- W4224252880 hasAuthorship W4224252880A5039992864 @default.
- W4224252880 hasAuthorship W4224252880A5052199293 @default.
- W4224252880 hasAuthorship W4224252880A5073901031 @default.
- W4224252880 hasAuthorship W4224252880A5084468073 @default.
- W4224252880 hasBestOaLocation W42242528801 @default.
- W4224252880 hasConcept C119857082 @default.
- W4224252880 hasConcept C12267149 @default.
- W4224252880 hasConcept C124101348 @default.
- W4224252880 hasConcept C126322002 @default.
- W4224252880 hasConcept C148524875 @default.
- W4224252880 hasConcept C154945302 @default.
- W4224252880 hasConcept C169258074 @default.
- W4224252880 hasConcept C197323446 @default.
- W4224252880 hasConcept C2776174234 @default.
- W4224252880 hasConcept C2776257435 @default.
- W4224252880 hasConcept C2778653478 @default.
- W4224252880 hasConcept C31258907 @default.
- W4224252880 hasConcept C41008148 @default.
- W4224252880 hasConcept C71924100 @default.
- W4224252880 hasConcept C84525736 @default.
- W4224252880 hasConcept C95623464 @default.
- W4224252880 hasConceptScore W4224252880C119857082 @default.
- W4224252880 hasConceptScore W4224252880C12267149 @default.
- W4224252880 hasConceptScore W4224252880C124101348 @default.
- W4224252880 hasConceptScore W4224252880C126322002 @default.
- W4224252880 hasConceptScore W4224252880C148524875 @default.
- W4224252880 hasConceptScore W4224252880C154945302 @default.
- W4224252880 hasConceptScore W4224252880C169258074 @default.
- W4224252880 hasConceptScore W4224252880C197323446 @default.
- W4224252880 hasConceptScore W4224252880C2776174234 @default.
- W4224252880 hasConceptScore W4224252880C2776257435 @default.
- W4224252880 hasConceptScore W4224252880C2778653478 @default.
- W4224252880 hasConceptScore W4224252880C31258907 @default.
- W4224252880 hasConceptScore W4224252880C41008148 @default.
- W4224252880 hasConceptScore W4224252880C71924100 @default.
- W4224252880 hasConceptScore W4224252880C84525736 @default.
- W4224252880 hasConceptScore W4224252880C95623464 @default.
- W4224252880 hasIssue "7" @default.
- W4224252880 hasLocation W42242528801 @default.
- W4224252880 hasOpenAccess W4224252880 @default.
- W4224252880 hasPrimaryLocation W42242528801 @default.