Matches in SemOpenAlex for { <https://semopenalex.org/work/W4224253409> ?p ?o ?g. }
- W4224253409 endingPage "920" @default.
- W4224253409 startingPage "920" @default.
- W4224253409 abstract "Problem-Since the outbreak of the COVID-19 pandemic, mass testing has become essential to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-19 patients display no physical symptoms whatsoever. Therefore, it is unlikely that these patients will undergo COVID-19 testing, which increases their chances of unintentionally spreading the virus. Currently, the primary diagnostic tool to detect COVID-19 is a reverse-transcription polymerase chain reaction (RT-PCR) test from the respiratory specimens of the suspected patient, which is invasive and a resource-dependent technique. It is evident from recent researches that asymptomatic COVID-19 patients cough and breathe in a different way than healthy people. Aim-This paper aims to use a novel machine learning approach to detect COVID-19 (symptomatic and asymptomatic) patients from the convenience of their homes so that they do not overburden the healthcare system and also do not spread the virus unknowingly by continuously monitoring themselves. Method-A Cambridge University research group shared such a dataset of cough and breath sound samples from 582 healthy and 141 COVID-19 patients. Among the COVID-19 patients, 87 were asymptomatic while 54 were symptomatic (had a dry or wet cough). In addition to the available dataset, the proposed work deployed a real-time deep learning-based backend server with a web application to crowdsource cough and breath datasets and also screen for COVID-19 infection from the comfort of the user's home. The collected dataset includes data from 245 healthy individuals and 78 asymptomatic and 18 symptomatic COVID-19 patients. Users can simply use the application from any web browser without installation and enter their symptoms, record audio clips of their cough and breath sounds, and upload the data anonymously. Two different pipelines for screening were developed based on the symptoms reported by the users: asymptomatic and symptomatic. An innovative and novel stacking CNN model was developed using three base learners from of eight state-of-the-art deep learning CNN algorithms. The stacking CNN model is based on a logistic regression classifier meta-learner that uses the spectrograms generated from the breath and cough sounds of symptomatic and asymptomatic patients as input using the combined (Cambridge and collected) dataset. Results-The stacking model outperformed the other eight CNN networks with the best classification performance for binary classification using cough sound spectrogram images. The accuracy, sensitivity, and specificity for symptomatic and asymptomatic patients were 96.5%, 96.42%, and 95.47% and 98.85%, 97.01%, and 99.6%, respectively. For breath sound spectrogram images, the metrics for binary classification of symptomatic and asymptomatic patients were 91.03%, 88.9%, and 91.5% and 80.01%, 72.04%, and 82.67%, respectively. Conclusion-The web-application QUCoughScope records coughing and breathing sounds, converts them to a spectrogram, and applies the best-performing machine learning model to classify the COVID-19 patients and healthy subjects. The result is then reported back to the test user in the application interface. Therefore, this novel system can be used by patients in their premises as a pre-screening method to aid COVID-19 diagnosis by prioritizing the patients for RT-PCR testing and thereby reducing the risk of spreading of the disease." @default.
- W4224253409 created "2022-04-26" @default.
- W4224253409 creator A5000822626 @default.
- W4224253409 creator A5003290346 @default.
- W4224253409 creator A5008997334 @default.
- W4224253409 creator A5010039742 @default.
- W4224253409 creator A5015139970 @default.
- W4224253409 creator A5017608892 @default.
- W4224253409 creator A5028434107 @default.
- W4224253409 creator A5032727078 @default.
- W4224253409 creator A5046314264 @default.
- W4224253409 creator A5049954961 @default.
- W4224253409 creator A5063670409 @default.
- W4224253409 creator A5064486960 @default.
- W4224253409 creator A5073211034 @default.
- W4224253409 creator A5085708361 @default.
- W4224253409 creator A5086043405 @default.
- W4224253409 date "2022-04-07" @default.
- W4224253409 modified "2023-10-05" @default.
- W4224253409 title "QUCoughScope: An Intelligent Application to Detect COVID-19 Patients Using Cough and Breath Sounds" @default.
- W4224253409 cites W2076377893 @default.
- W4224253409 cites W2468716549 @default.
- W4224253409 cites W2498298636 @default.
- W4224253409 cites W2572494275 @default.
- W4224253409 cites W2573056035 @default.
- W4224253409 cites W2619772334 @default.
- W4224253409 cites W2743691251 @default.
- W4224253409 cites W2797142604 @default.
- W4224253409 cites W2949308781 @default.
- W4224253409 cites W3013277995 @default.
- W4224253409 cites W3015815361 @default.
- W4224253409 cites W3016173660 @default.
- W4224253409 cites W3017243633 @default.
- W4224253409 cites W3017309755 @default.
- W4224253409 cites W3021548101 @default.
- W4224253409 cites W3026059552 @default.
- W4224253409 cites W3037160913 @default.
- W4224253409 cites W3039633474 @default.
- W4224253409 cites W3040333563 @default.
- W4224253409 cites W3045801508 @default.
- W4224253409 cites W3088067841 @default.
- W4224253409 cites W3088922629 @default.
- W4224253409 cites W3091468319 @default.
- W4224253409 cites W3104350068 @default.
- W4224253409 cites W3105837102 @default.
- W4224253409 cites W3109783949 @default.
- W4224253409 cites W3118694803 @default.
- W4224253409 cites W3118723804 @default.
- W4224253409 cites W3129482290 @default.
- W4224253409 cites W3135057764 @default.
- W4224253409 cites W3140531618 @default.
- W4224253409 cites W3142312189 @default.
- W4224253409 cites W3143375397 @default.
- W4224253409 cites W3152531055 @default.
- W4224253409 cites W3153859749 @default.
- W4224253409 cites W3161718150 @default.
- W4224253409 cites W3162112041 @default.
- W4224253409 cites W3166195577 @default.
- W4224253409 cites W3168715801 @default.
- W4224253409 cites W3184886727 @default.
- W4224253409 cites W3187283875 @default.
- W4224253409 cites W3187951587 @default.
- W4224253409 cites W3193859452 @default.
- W4224253409 cites W3200152448 @default.
- W4224253409 cites W3205790296 @default.
- W4224253409 cites W3209152703 @default.
- W4224253409 cites W3211191383 @default.
- W4224253409 cites W3215732401 @default.
- W4224253409 cites W4206458399 @default.
- W4224253409 cites W4206819918 @default.
- W4224253409 doi "https://doi.org/10.3390/diagnostics12040920" @default.
- W4224253409 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35453968" @default.
- W4224253409 hasPublicationYear "2022" @default.
- W4224253409 type Work @default.
- W4224253409 citedByCount "9" @default.
- W4224253409 countsByYear W42242534092022 @default.
- W4224253409 countsByYear W42242534092023 @default.
- W4224253409 crossrefType "journal-article" @default.
- W4224253409 hasAuthorship W4224253409A5000822626 @default.
- W4224253409 hasAuthorship W4224253409A5003290346 @default.
- W4224253409 hasAuthorship W4224253409A5008997334 @default.
- W4224253409 hasAuthorship W4224253409A5010039742 @default.
- W4224253409 hasAuthorship W4224253409A5015139970 @default.
- W4224253409 hasAuthorship W4224253409A5017608892 @default.
- W4224253409 hasAuthorship W4224253409A5028434107 @default.
- W4224253409 hasAuthorship W4224253409A5032727078 @default.
- W4224253409 hasAuthorship W4224253409A5046314264 @default.
- W4224253409 hasAuthorship W4224253409A5049954961 @default.
- W4224253409 hasAuthorship W4224253409A5063670409 @default.
- W4224253409 hasAuthorship W4224253409A5064486960 @default.
- W4224253409 hasAuthorship W4224253409A5073211034 @default.
- W4224253409 hasAuthorship W4224253409A5085708361 @default.
- W4224253409 hasAuthorship W4224253409A5086043405 @default.
- W4224253409 hasBestOaLocation W42242534091 @default.
- W4224253409 hasConcept C116675565 @default.
- W4224253409 hasConcept C126322002 @default.
- W4224253409 hasConcept C159047783 @default.
- W4224253409 hasConcept C177713679 @default.